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1 Further Experimental Analysis

Error distribution on test set To provide better intuition into our quantitative
results, we plot the distributions of prediction errors for diffuse albedo (Ld),
normals (Ln), roughness (Lr) and relighting (Lrec) in Figure 1. Then, we sort
the BRDF reconstruction results in the test set according to Ld +Ln +Lrec and
illustrate the estimation and relighting quality for a random material picked from
various percentiles of the above error distribution. The qualitative comparison is
shown in Figure 2.

Even though our network is trained end-to-end, we observe physically mean-
ingful trends in Figure 1. For instance, the materials that correspond to lower
error percentiles tend to have flat normals, uniform diffuse color and wide spec-
ular lobes. On the other hand, materials with higher errors tend to have more
complex normals, stronger local variations in diffuse color and roughness, or more
prominent highlights. This demonstrates the benefits of our network design which
considers the underlying problem structure. We also observe that normal and
diffuse color estimates are quite accurate even at error percentiles higher than
50, which contributes to reasonable relighting results under novel lighting even
at high error percentiles.

Albedo Normal Roughness Relighting

Fig. 1. From the left to the right, error distributions of diffuse albedo, normal, roughness
and relighting.

2 Further Results on Real Data

Comparison with photometric stereo as reference In Figure 3, we compare the
normals estimated by our method with that of [1], using the normal map from
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Fig. 2. SVBRDF estimation results sorted according to the prediction error. The error
here is defined as Ld + Ln + Lrec. We do not consider Lr here roughness has relatively
smaller influence towards the final appearance of the surface. Here, P denotes the
percentage of samples in the test set with error higher than the considered sample.

photometric stereo as reference. In the main paper, we use the photometric stereo
method of [2]. Here, we instead use a simpler but more robust method. We acquire
images of a material sample under 52 different directional point light sources. We
abandon the 5 most brightest observations and 5 darkest observations and use
the rest for a Lambertian photometric stereo. We find such a method to be quite
robust to shadows, as well as the effects of complex BRDF such as glossiness
or specularity. In comparison, we observe that our CNN is able to capture very
fine details in the normal map, in particular, better than the method of [1]. For
instance, note the detail within the grooves of the material in the second and
third rows. This demonstrates the efficacy of the proposed method for normal
and SVBRDF estimation.
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Fig. 3. Comparison of normal maps using our method and [1], with photometric stereo
as reference. Even with a lightweight acquisition system, our network predicts high
quality normal maps.

Input Albedo Normals Roughness Rendering Input Albedo Normals Roughness Rendering

Fig. 4. SVBRDF estimation results on real data. All images are acquired using a
handheld mobile phone camera, where the z-axis of the camera is only approximately
perpendicular to the sample surface. The inaccuracy in positional calibration of the
camera is visible in the input image of the example in the second row of the first column,
where the highlight is not exactly in the center of the image. However, our method still
obtains reasonable normal and SVBRDF estimation results in all cases. The images in
the first row are obtained using an iPhone 6s, the second row using a Huawei P9 while
the next three rows using a Lenovo Phab 2. This demonstrates that our algorithm can
handle new unknown devices quite well.
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Input Albedo Normal Roughness Sphere

Fig. 5. Rendering of the estimated real spatially-varying BRDF on a sphere, under a
very different oblique lighting direction.

Further real data results in unconstrained environments In Figure 4, we show
several more examples of surface normal and BRDF estimation with real data
using the proposed method. The images are acquired in unconstrained settings
with the camera flash enabled, for several different material types derived from
wood flooring, tiles, carpets and so on. In all rows, the mobile phone is hand-held
and only approximately parallel to the surface. In each case, we observe that the
recovered normals, as well as the diffuse albedo and specular components of the
spatially-varying BRDF appear qualitatively correct. In some cases, such as the
second row of the first column, we observe that even very tight specular lobes
are well-estimated, as evident from the lobe’s compactness in the relighted image.
The first row is imaged using an iPhone 6s, the second row with a Huawei P9
and the last three rows with a Lenovo Phab 2. Even though we do not calibrate
the mobile phone, our network generalizes quite well to new devices.

Input Albedo Normals Rough Render Input Albedo Normals Rough Render

Fig. 6. BRDF estimation results on real data acquired in bright outdoor illumination.

Real data results in outdoor illumination Although we train out network with
indoor lighting plus flash light, our method generalizes reasonably well to outdoor
illumination. We acquire images in bright outdoor conditions with the flash
enabled. We use the same network clsCRF-pt from the main paper, that assumes
dominant point and environment lighting. The SVBRDF estimation results are
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Fig. 7. A material editing example. Hav-
ing reconstructed the SVBRDF and nor-
mals of the two samples, we swap the
original geometry and material properties,
then relight under novel illumination.

shown in Figure 6. While ground truth is not available, the recovered normal
maps and BRDF terms are plausible, with well-delineated details. We believe
that our dataset augmentation techniques have been effective in handling this
scenario.

Material Editing We can edit the reconstructed SVBRDFs by transferring mate-
rial properties. Figure 7 shows an example where we transfer BRDF properties
across different material types and render in a novel lighting condition.

Visualization for relighting on a sphere under oblique illumination For another
visualization of the normal and BRDF estimation on real data, we render the
estimated material on a sphere illuminated under an oblique lighting direction that
is very different from the input lighting. Recall that we only use an approximately
planar patch of material as input. The BRDF estimation and relighted sphere
are illustrated in Figure 5. We observe that the appearance of the sphere even
under a novel lighting direction is quite reasonable.

Comparison with [1] on [1]’s dataset In the main paper, we compare the method
of [1] on our data (Table 4 and Figure 7). A comparison on the data from [1]
is complicated by errors in their provided ground truth. We illustrate this with
a few examples in Figure 9. Note that while the plastic samples with circular
bumps have been rotated, the ground truth normals should have pointed in the
same direction. Similarly, for the wood samples, note that the visualized colors
of normal directions in the grooves are the same, even though the input has been
rotated. It seems that the same rotation has been applied to both diffuse and
normal maps for data augmentation, without taking geometry into account.

We nevertheless try our model on test data from [1] and report the results in
Table 1. We evaluate only diffuse albedos and normals, since microfacet models
in the two works are different. Since [1] does not report quantitative numbers, we
use their provided models to obtain the comparative numbers. For diffuse albedo,
our method outperforms [10] for all material types without fine-tuning on their
data. Our normal errors are “larger”, but this comparison is not meaningful due
to errors in their ground truths. Qualitative results are in Figure 8.
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Wood Metal Plastic Summary

[1] Ours [1] Ours [1] Ours [1] Ours

Albedo 0.0022 0.0019 0.0040 0.0035 0.0033 0.0007 0.0031 0.0020

Normal 0.0104 0.0173 0.0186 0.0187 0.0127 0.0103 0.0137 0.0162

Table 1. Quantitative comparison with [1] using its dataset, without fine-tuning. Please
note the numbers are only representative, due to errors in ground truth of [1].

Input Albedo Normal

[1] Ours [1] Ours GT [1] Ours GT

Fig. 8. Qualitative comparison with [1]. The diffuse colors have been normalized as in
[1] for a fair comparison. We do not fine-tune our network on the dataset from [1].
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Fig. 9. Examples of errors in ground truth normals in the dataset of [1].

3 Microfacet BRDF Model

We use the microfacet BRDF model proposed in [3]. Let di, ni, ri be the diffuse
color, normal and roughness, respectively, at pixel i and I(di,ni, ri) be its
intensity observed by the camera. Our BRDF model is defined as

I(di,ni, ri) = di +
D(hi, ri)F (vi,hi)G(li,vi,hi, ri)

4(ni · li)(ni · vi)
, (1)

where vi and li are the view and light directions, while hi is the half angle vector.
Further, D(hi, ri), F (vi,hi) and G(li,vi,hi, ri) are the distribution, Fresnel and
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Fig. 10. An aluminum material rendered with different F0. We obersve that when
rendering with F0 = 0.5 the area of specular highlight is much larger and better matches
appearnaces of metals in the real world. For all other materials, we use F0 = 0.05 as
the most reasonable value.

geometric terms, respectively, which are defined as

D(hi, ri) =
α2
i

π((ni · hi)2(α2
i − 1) + 1)2

(2)

αi = r2i (3)

F (v,h) = (1− F0)2(−5.55473(v·h)−6.98316)v·h + F0 (4)

G(l,v,n) = G1(v,n)G1(l,n) (5)

ki =
(ri + 1)2

8
(6)

G1(v,n) =
n · v

(n · v)(1− k) + k
(7)

G1(l,n) =
n · l

(n · l)(1− k) + k
, (8)

with F0 the specular reflectance at normal incidence. For a dielectric material,
the value of F0 is determined by the index of refraction η:

F0 =
(1− η)2

(1 + η)2
. (9)

For a conductor material, it is determined by the index of refraction η and the
absorption coefficient κ:

F0 =
(1 + η)2 + κ2

(1− η)2 + κ2
. (10)

When rendering our dataset, we set F0 = 0.5 for metal and F0 = 0.05 for other
kinds of materials. Figure 10 shows an example of smooth aluminum material
rendered with F0 = 0.05 and F0 = 0.5. We observe that the material rendered
with F0 = 0.5 has a much larger area of specular highlight, which matches
appearances of metals in practice.
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4 Details of Continuous DCRFs

We use continuous densely connected conditional random fields (DCRFs) for
post-processing to remove artifacts caused by saturated highlights and noise in
the prediction of the neural network [4,5]. We customize the DCRFs to better
suit our problem of spatially-varying BRDF reconstruction. The distinguishing
factor for our DCRF construction is the design of spatially varying weight maps
that allow incorporating domain specific knowledge into the CRF inference. In
the following, we will discuss the design and the intuition behind the usage of
the weight map, as well as the details of training and inference for the DCRF.

Weight Maps of DCRFs We first discuss the DCRF for diffuse albedo prediction.
Its energy function is defined as

min
{di}

:

N∑
i=1

αd
i (di − d̂i)

2 +

N∑
i,j

(di − dj)
2
(
βd
1κ1(pi; pj)

+βd
2κ2(pi, Īi; pj , Īj) + βd

3κ3(pi, d̂i; pj , d̂j)
)
. (11)

Here, the coefficient αd
i is spatially varying. A larger αd

i indicates greater confi-
dence in the prediction from the neural network. Since we use a colocated point
light source for illumination, an observation is that saturations caused by the
specular highlight are usually in the middle of the image. Another observation is
that since the flash illumination is white in color, the saturated pixels are usually
white, which means the minimum of their RGB values will be large. Therefore,
for regions near the center of the image or regions with specular highlights, we
should have a smaller unary weight so that the DCRF may smooth out the
artifacts. Based on these two observations, we define the weight map for the
unary term αd

i as

αd
i = αd

i0 max(1− exp(− p2
i

σ2
d0

), 1− exp(− (cmin
i − 1)2

σ2
d1

))

+αd
i1, (12)

where cmin
i is the minimum of the three color channels at pixel i:

cmin
i = min(Ri, Gi, Bi). (13)

Here, αd
i0 and αd

i1 are two learnable parameters. We set αd
i1 = 0 and αd

i0 = 1 at
the beginning of the training process. We set σd0 = 0.5 and σd1 = 0.08 through
the whole training process. Figure 11 shows examples of the weight map for
diffuse albedo prediction.

For normal prediction, we do not observe such strong correlation between the
prediction error and the position or intensity of the image. Therefore, we just set
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Fig. 11. The spatially varying weight αd
i for the DCRF of diffuse albedo prediction.

a uniform weight for every pixel in the image. The energy function is defined as

min
{ni}

:

N∑
i=1

αn(ni − n̂i)
2 +

N∑
i,j

(ni − nj)
2
(
βn
1 κ1(pi; pj)

+βn
2 κ2(pi, ∆di; pj , ∆dj)

)
, (14)

where αn, βn
1 and βn

2 are learnable parameters that trade-off relative confidences
in the unary, a pairwise smoothness prior and a prior on correlation between
normals and albedo boundaries.

Finally, for roughness prediction, the energy function is defined as

min
{ri}

:

N∑
i=1

αr
i0(ri − r̂i)2 + αr

i1(ri − r̃i)2 +

N∑
i,j

(ri − rj)2(
β1κ1(pi; pj) + β2κ2(pi,di; pj ,dj)

)
, (15)

where r̂i is the prediction from the network and r̃i is the prediction from a grid
search. We find that the prediction from grid search is usually only accurate near
the glossy regions, which means these regions should have a larger αr

i1. Therefore,
we define the weight map to be

αr
i1 = max(exp(− p2

i

σ2
r0

), exp(−c
i
m − 1

σ2
r1

)), (16)

where αr
i0 is constant across the whole image. Both αr

i0 and αr
i1 can be learned

through back propagating the gradient. We set σr0 = 0.5 and σr1 = 0.2.

Hyperparameters for Training And Inference In order to increase the capacity of
the DCRF model, we learn different sets of BRDF parameters for each type of
material. During both inference and training time, we average the DCRF coeffi-
cients according to the output of our material classifier. Let {θi} = {{αi}, {βi}}
be the DCRF coefficients for one material. To enhance the robustness of our
method, we re-parameterize the coefficients as

θ̄i =
θi∑
i θi

. (17)
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We clip the DCRF coefficients to always be positive. We use the Adam optimizer
to optimize the coefficients. The learning rate is set to 2× 10−4 and we reduce
it by half after every 2000 iterations. We adopt the method in [5] to train
our DCRF model. The batch size is set to 32. We train the DCRF for diffuse
albedo prediction over 4000 iterations and the DCRF for roughness and normal
prediction over 3000 iterations. The standard deviations of Gaussian smooth
kernels for the three DCRFs are shown in Table 2.

Gaussian Kernels of DCRF for Diffuse Albedo

pi Īi di

κ1 0.04 - -

κ2 0.06 0.2 -

κ3 0.06 - 0.1

Gaussian Kernels of DCRF for Normal Map

pi ∆di

κ1 0.03 -

κ2 0.06 0.1

Gaussian Kernels of DCRF for Roughness Map

pi di

κ1 0.04 -

κ2 0.06 0.2

Table 2. Standard deviations of the Gaussian smoothing kernels of the DCRFs for
diffuse albedo, normal and roughness prediction.

5 Details of Dataset

In experiments, besides rotating and cropping the original high resolution spatially-
varying materials, another important data augmentation is to scale the BRDF
parameters for each patch before rendering them into images. For diffuse albedo,
we uniformly sample scale coefficients in the range 0.8 to 1.4. For normal map,
we sample the scale coefficients in the same way, apply the coefficients to the x
and y components, then normalize the normal vector to be of unit length. For
roughness, we sample the scale coefficients from a Gaussian distribution centered
at 1, with standard deviation equal to 0.2. Empirically, we observe that such
data augmentation can greatly improve the generalization ability of the network.
For example, simply scaling the roughness parameter for each patch decreases
the validation error for roughness prediction by 15%.
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6 Video Comparison

In the supplementary material, we include a video clip in which we compare
the relighting results using ground-truth BRDF parameters(Ground truth), our
estimated BRDF parameters (Our result), BRDF estimation from [1](Li et al.)
and from Allegorithmic substance B2M(Bitmap2Material), a commercial software
for single image material capture. We compare 4 kinds of materials, specular
stone, metal, wood and plastic. All of them are from our synthetic dataset. The
inputs to our network are rendered under the illumination of point light source
and environment map while the inputs to [1] and Allegorithmic substance B2M
are rendered with environment map only. From the video clip, we can see that our
relighting results are very close to the ground-truth, while [1] does not recover
the specular highlight well. Bitmap2Material predicts BRDF parameters based
on simple heuristics and is very sensitive to image gradients. Note that there are
watermarks on the results of Bitmap2Material.
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