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Abstract. We propose a material acquisition approach to recover the
spatially-varying BRDF and normal map of a near-planar surface from a
single image captured by a handheld mobile phone camera. Our method
images the surface under arbitrary environment lighting with the flash
turned on, thereby avoiding shadows while simultaneously capturing high-
frequency specular highlights. We train a CNN to regress an SVBRDF
and surface normals from this image. Our network is trained using a
large-scale SVBRDF dataset and designed to incorporate physical insights
for material estimation, including an in-network rendering layer to model
appearance and a material classifier to provide additional supervision
during training. We refine the results from the network using a dense
CRF module whose terms are designed specifically for our task. The
framework is trained end-to-end and produces high quality results for a
variety of materials. We provide extensive ablation studies to evaluate our
network on both synthetic and real data, while demonstrating significant
improvements in comparisons with prior works.

1 Introduction

The wide variety of images around us are the outcome of interactions between
lighting, shapes and materials. In recent years, the advent of convolutional neural
networks (CNNs) has led to significant advances in recovering shape using just
a single image [12, 9]. In contrast, material estimation has not seen as much
progress, which might be attributed to multiple causes. First, material properties
can be more complex. Even discounting more complex global illumination effects,
materials are represented by a spatially-varying bidirectional reflectance distribu-
tion function (SVBRDF), which is an unknown high-dimensional function that
depends on exitant and incident lighting directions [25]. Second, while large-scale
synthetic and real datasets have been collected for shape estimation [8, 24], there
is a lack of similar data for material estimation. Third, pixel observations in
a single image contain entangled information from factors such as shape and
lighting, besides material, which makes estimation ill-posed.

In this work, we present a practical material capture method that can recover
an SVBRDF from a single image of a near-planar surface, acquired using the
camera of an off-the-shelf consumer mobile phone, under unconstrained envi-
ronment illumination. This is in contrast to conventional BRDF capture setups
that usually require significant equipment and expense [11, 21]. We address this
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Fig. 1. We propose a deep learning-
based light-weight SVBRDF acquisition
system. From a single image of a near
planar surface captured with a flash-
enabled mobile phone camera under ar-
bitrary lighting, our network recovers
surface normals and spatially-varying
BRDF parameters – diffuse albedo and
specular roughness. Rendering the esti-
mated parameters produces an image
almost identical to the input image.

challenge by proposing a novel CNN architecture that is specifically designed
to account for the physical form of BRDFs and the interaction of light with
materials, which leads to a better learning objective. We also propose to use a
dataset of SVBRDFs that has been designed for perceptual accuracy of materials.
This is in contrast to prior datasets that are limited to homogeneous materials,
or conflate material properties with other concepts such as object categories.

We introduce a novel CNN architecture that encodes the input image into a
latent representation, which is decoded into components corresponding to surface
normals, diffuse texture, and specular roughness. We propose a differentiable
rendering layer that recombines the estimated components with a novel lighting
direction. This gives us additional supervision from images of the material
rendered under arbitrary lighting directions during training; only a single image
is used at test time. We also observe that coarse classification of BRDFs into
material meta-categories is an easier task, so we additionally include a material
classifier to constrain the latent representation. The inferred BRDF parameters
from the CNN are quite accurate, but we achieve further improvement using
densely-connected conditional random fields (DCRFs) with novel unary and
smoothness terms that reflect the properties of the underlying microfacet BRDF
model. We train the entire framework in an end-to-end manner.

Our approach – using our novel architecture and SVBRDF dataset – can
outperform the state-of-art. We demonstrate that we can further improve these
results by leveraging a form of acquisition control that is present on virtually every
mobile phone – the camera flash. We turn on the flash of the mobile phone camera
during acquisition; our images are thus captured under a combination of unknown
environment illumination and the flash. The flash illumination helps further
improve our reconstructions. First, it minimizes shadows caused by occlusions.
Second, it allows better observation of high-frequency specular highlights, which
allows better characterization of material type and more accurate estimation.
Third, it provides a relatively simple setup for acquisition that eases the burden
on estimation and allows the use of better post-processing techniques.

In contrast to recent works such as [2] and [1] that can reconstruct BRDFs
with stochastic textures, we can handle a much larger class of materials. Also,
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our results, both with and without flash, are a significant improvement over the
recent method of Li et al. [19] even though our trained model is more compact.
Our experiments demonstrate advantages over several baselines and prior works
in quantitative comparisons, while also achieving superior qualitative results.
In particular, the generalization ability of our network trained on the synthetic
BRDF dataset is demonstrated by strong performance on real images, acquired
in the wild, in both indoor and outdoor environments, using multiple different
phone cameras. Given the estimated BRDF parameters, we also demonstrate
applications such as material editing and relighting of novel shapes. To summarize,
we propose the following novel contributions:

– A lightweight method for high quality acquisition of SVBRDF and normal
map using a single mobile phone image in an unconstrained environment.

– A physically-motivated CNN and DCRF framework for joint SVBRDF recon-
struction and material classification.

– Use of a large-scale SVBRDF dataset specifically attuned to complex materials.

2 Related Work

BRDF Acquisition: The Bidirectional Reflection Distribution function (BRDF)
is a 4-D function that characterizes how a surface reflects lighting from an incident
direction toward an outgoing direction [25]. Alternatively, BRDFs are represented
using low-dimensional parametric models [4, 10, 35, 27]. In this work, we use a
physically-based microfacet model [16] that our SVBRDF dataset uses.

Traditional methods for BRDF acquisition rely on densely sampling this 4-D
space using expensive, calibrated acquisition systems [11, 21, 22]. Recent work
has demonstrated that assuming BRDFs lie in a low-dimensional subspace allows
for them to be reconstructed from a small set of measurements [26, 37]. However,
these measurements still to be taken under controlled settings. We assume a
single image captured under largely uncontrolled settings.

Photometric stereo-based methods recover shape and BRDF from images.
Some of these methods recover a homogeneous BRDF given one or both of
the shape and illumination [31, 32, 28]. Chandraker et al. [5–7] utilize motion
cues to jointly recover shape and BRDF from images under known directional
illumination. Hui et al. [14] recover SVBRDFs and shape from multiple images
under known illuminations. All of those methods require some form of controlled
acquisition, while we estimate SVBRDFs and normal maps “in-the-wild”.

Recent work has shown promising results for “in-the-wild” BRDF acquisition.
Hui et al. [15] demonstrate that the collocated camera-light setup on mobile
devices is sufficient to reconstruct SVBRDFs and normals. They require over
30 calibrated images, while we aim to do the same with a single image. Aittala
et al. [2] propose using a flash and no-flash image pair to reconstruct stochastic
SVBRDFs and normals using an optimization-based scheme. Our method can
handle a larger class of materials and is orders of magnitude faster.
Deep learning-based Material Estimation: Inspired by the success of deep
learning for a variety of vision and graphics tasks, recent work has considered CNN-



4 Z. Li, K. Sunkavalli, M. Chandraker

based material recognition and estimation. Bell et al. [3] train a material parsing
network using crowd-sourced labeled data. However, their material recongition is
driven more by object context, rather than appearance. Liu et al. [20] demonstrate
image-based material editing using a network trained to recover homogenous
BRDFs. Methods have been proposed to decompose images into their intrinsic
image components which are an intermediate representation for material and
shape [23, 33, 34]. Rematas et al. [29] train a CNN to reconstruct the reflectance
map – a convolution of the BRDF with the illumination – from a single image of
a shape from a known class. In subsequent work, they disentangle the reflectance
map into the BRDF and illumination [13]. Neither of these methods handle
SVBRDFs, nor do they recover fine surface normal details. Kim et al. [17]
reconstruct a homegeneous BRDF by training a network to aggregate multi-view
observations of an object of known shape .

Similar to us, Aittala et al. [1] and Li et al. [19] reconstruct SVBRDFs and
surface normals from a single image of a near-planar surface. Aittala et al. use a
neural style transfer-based optimization approach to iteratively estimate BRDF
parameters, however, they can only handle stationary textures and there is no
correspondence between the input image and the reconstructed BRDF [1]. Li
et al. use supervised learning to train a CNN to predict SVBRDF and normals
from a single image captured under environment illumination [19]. Their training
set is small, which necessitates a self-augmentation method to generate training
samples from unlabeled real data. Further, they train a different set of networks
for each parameter (diffuse texture, normals, specular albedo and roughness)
and each material type (wood, metal, plastic). We demonstrate that by using
our novel CNN architecture, supervised training on a high-quality dataset and
acquisition under flash illumination, we are able to (a) reconstruct all these
parameters with a single network, (b) learn a latent representation that also
enables material recognition and editing, (c) obtain results that are significantly
better qualitatively and quantitatively.

3 Acquisition Setup and SVBRDF Dataset

In this section, we describe the setup for single image SVBRDF acquisition and
the dataset we use for learning.
Setup Our goal is to reconstruct the spatially-varying BRDF of a near planar
surface from a single image captured by a mobile phone with the flash turned
on for illumination. We assume that the z-axis of the camera is approximately
perpendicular to the planar surface (we explicitly evaluate against this assumption
in our experiments). For most mobile devices, the position of the flash light is
usually very close to the position of the camera, which provides us a univariate
sampling of a isotropic BRDF [15]. We argue that by imaging with a collocated
camera and point light, we can have additional constraints that yield better BRDF
reconstructions compared to acquisition under just environment illumination.

Our surface appearance is represented by a microfacet parametric BRDF
model [16]. Let di, ni, ri be the diffuse color, normal and roughness, respectively,
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Fig. 2. Examples of our material types.

Materials Train Test Materials Train Test

fabric 165 29 polymer 33 6
ground 23 4 stone-diff 177 30
leather 10 2 stone-spec 38 6
metal 82 13 wood 60 10

Table 1. Distribution of materials in our
training and test sets.

at pixel i. Our BRDF model is defined as:

ρ(di,ni, ri) = di +
D(hi, ri)F (vi,hi)G(li,vi,hi, ri)

4(ni · li)(ni · vi)
(1)

where vi and li are the view and light directions and hi is the half angle vector.
Given an observed image I(di,ni, ri,L), captured under unknown illumination
L, we wish to recover the parameters di, ni and ri for each pixel i in the image.
Please refer to the supplementary material for more details on the BRDF model.
Dataset We train our network on the Adobe Stock 3D Material dataset3, which
contains 688 materials with high resolution (4096 × 4096) spatially-varying
BRDFs. Part of the dataset is created by artists while others are captured using a
scanner. We use 588 materials for training and 100 materials for testing. For data
augmentation, we randomly crop 12, 8, 4, 2, 1 image patches of size 512, 1024,
2048, 3072, 4096. We resize the image patches to a size of 256×256 for processing
by our network. We flip patches along x and y axes and rotate them in increments
of 45 degrees. Thus, for each material type, we have 270 image patches.4 We
randomly scale the diffuse color, normal and roughness for each image patch to
prevent the network from overfitting and memorizing the materials. We manually
segment the dataset into 8 materials types. The distribution is shown in Table 1,
with an example visualization of each material type in Figure 2. More details on
rendering the dataset are in supplementary material.

4 Network Design for SVBRDF Estimation

In this section, we describe the components of our CNN designed for single-image
SVBRDF estimation. The overall architecture is illustrated in Figure 3.

4.1 Considerations for Network Architecture

Single-image SVBRDF estimation is an ill-posed problem. Thus, we adopt a data-
driven approach with a custom-designed CNN that reflects physical intuitions.

3 https://stock.adobe.com/3d-assets
4 The total number of image patches for each material can be computed as (12 + 8 +
4 + 2 + 1)× (1 + 2 + 7) = 270.
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Fig. 3. Our network for SVBRDF estimation consists of an encoder, three decoder
blocks with skip links to retrieve SVBRDF components, a rendering layer and a material
classifier, followed by a DCRF for refinement (not visualized). See Section 4 for how our
architectural choices are influenced by the problem structure of SVBRDF estimation
and supplementary material for the hyperparameter details.

Our basic network architecture consists of a single encoder and three decoders
which reconstruct the three spatially-varying BRDF parameters: diffuse color
di, normals ni and roughness ri. The intuition behind using a single encoder is
that different BRDF parameters are correlated, thus, representations learned for
one should be useful to infer the others, which allows significant reduction in the
size of the network. The input to the network is an RGB image, augmented with
the pixel coordinates as a fourth channel. We add the pixel coordinates since
the distribution of light intensities is closely related to the location of pixels, for
instance, the center of the image will usually be much brighter. Since CNNs are
spatially invariant, we need the extra signal to let the network learn to behave
differently for pixels at different locations. Skip links are added to connect the
encoder and decoders to preserve details of BRDF parameters.

Another important consideration is that in order to model global effects over
whole images like light intensity fall-off or large areas of specular highlights, it is
necessary for the network to have a large receptive field. To this end, our encoder
network has seven convolutional layers of stride 2, so that the receptive field of
every output pixel covers the entire image.

4.2 Loss Functions for SVBRDF Estimation

For each BRDF parameter, we have an L2 loss for direct supervision. We now
describe other losses for learning a good representation for SVBRDF estimation.
Rendering layer Since our eventual goal is to model the surface appearance, it is
important to balance the contributions of different BRDF parameters. Therefore,
we introduce a differentiable rendering layer that renders our BRDF model
(Eqn. 1) under the known input lighting. We add a reconstruction loss based on the
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Angle 0◦−10◦ 10◦−25◦ 25◦−90◦

Prob(Pi) 0.592 0.278 0.130
Weight(Wi) 0.869 1.060 1.469

Table 2. The θ distribution of the normal
vector in the dataset, where θ is the an-
gle between normal vector and z axis. To
avoid the network from over-smoothing the
normal map, we group normal vectors into
three bins according to θ. With probability
Pi for bin i, its weight is Wi = 0.7+ 1/10Pi.

difference between these renderings with the predicted parameters and renderings
with ground-truth BRDF parameters. The gradient can be backpropagated
through the rendering layer to train the network. In addition to rendering the
image under the input lighting, we also render images under novel lights. For
each batch, we create novel lights by randomly sampling the the point light
source on the upper hemisphere. This ensures that the network does not overfit
to collocated illumination and is able to reproduce appearance under other light
conditions. The final loss function for the encoder-decoder part of our network is:

L = λdLd + λnLn + λrLr + λrecLrec, (2)

where Ld, Ln, Lr and Lrec are the L2 losses for diffuse, normal, roughness and
rendered image predictions, respectively. Here, λ’s are positive coefficients to
balance the contributions of various terms, which are set to 1 in our experiments.

Since we train on near planar surfaces, the majority of the normal directions
are flat. Table 2 shows the normal distributions in our dataset. To prevent the
network from over-smoothing the normals, we group the normal directions into
different bins and for each bin we assign a different weight when computing the
L2 error. This balance various normal directions in the loss function.

Material Classification The distribution of BRDF parameters is closely related
to the surface material type. However, training separate networks for different
material types similar to [19] is expensive. Also the size of the network grows
linearly with the number of material types, which limits utility. Instead, we
propose a split-merge network with very little computational overhead.

Given the highest level of features extracted by the encoder, we send the
feature to a classifier to predict its material type. Then we evaluate the BRDF
parameters for each material type and use the classification results as (the output
of softmax layer) weights. This averages the prediction from different material
types to obtain the final BRDF reconstruction results. Suppose we have N
channels for BRDF parameters and K material types. To output the BRDF
reconstruction for each type of material, we only modify the last convolutional
layer of the decoder so that the output channel will be K ×N instead of N . In
practice, we set K to be 8, as shown in Table 1.

The classifier is trained together with the encoder and decoder from scratch,
with the weights of each label set to be inversely proportional to the number of
examples in Table 1 to balance different material types in the loss function. The
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overall loss function of our network with the classifier is

L = λdLd + λnLn + λrLr + λrecLrec + λclsLcls, (3)

where Lcls is cross entropy loss and λcls = 0.0005 to limit the gradient magnitude.

4.3 Designing DCRFs for Refinement

The prediction of our base network is quite reasonable. However, accuracy may
further be enhanced by post-processing through a DCRF (trained end-to-end).
Diffuse color refinement For diffuse prediction, when capturing the image of
specular materials, parts of the surface might be saturated by specular highlight.
This can sometimes lead to artifacts in the diffuse color prediction since the
network has to hallucinate the diffuse color from nearby pixels. To remove such
artifacts, we incorporate a densely connected continuous conditional random field
(DCRF) [30] to smooth the diffuse color prediction. Let d̂i be the diffuse color
prediction of network at pixel i, pi be its position and Īi is the normalized diffuse
RGB color of the input image. We use the normalized color of the input image
to remove the influence of light intensity when measuring the similarity between
two pixels. The energy function of the dense connected CRF that is minimized
over {di} for diffuse prediction is defined as:

N∑
i=1

α
d
i (di − d̂i)

2
+

N∑
i,j

(di − dj)
2
(
β
d
1κ1(pi;pj) + β

d
2κ2(pi, Īi;pj , Īj) + β

d
3κ3(pi, d̂i;pj , d̂j)

)
. (4)

Here κi are Gaussian smoothing kernels, while αd
i and {βd

i } are coefficients to
balance the contribution of unary and smoothness terms. Notice that we have
a spatially varying αd

i to allow different unary weights for different pixels. The
intuition is that artifacts usually occur near the center of images with specular
highlights. For those pixels, we should have lower unary weights so that the CRF
learns to predict their diffuse color from nearby pixels.
Normal refinement Once we have the refined diffuse color, we can use it to
improve the prediction of other BRDF parameters. To reduce the noise in normal
prediction, we use a DCRF with two smoothness kernels. One is based on the
pixel position while the other is a bilateral kernel based on the position of the
pixel and the gradient of the diffuse color. The intuition is that pixels with similar
diffuse color gradients often have similar normal directions. Let n̂i be the normal
predicted by the network. The energy function for normal prediction is defined as

min
{ni}

:

N∑
i=1

α
n
(ni − n̂i)

2
+

N∑
i,j

(ni − nj)
2

(
β
n
1 κ1(pi;pj) + β

n
2 κ2(pi, ∆di;pj , ∆dj)

)
(5)

Roughness refinement Since we use a collocated light source to illuminate the
material, once we have the normal and diffuse color predictions, we can use them
to estimate the roughness term by either grid search or using a gradient-based
method. However, since the microfacet BRDF model is not convex nor monotonic
with respect to the roughness term, there is no guarantee that we can find a global
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minimum. Also, due to noise from the normal and diffuse predictions, as well as
environment lighting, it is difficult to get an accurate roughness prediction using
optimization alone, especially when the glossiness in the image is not apparent.
Therefore, we propose to combine the output of the network and the optimization
method to get a more accurate roughness prediction. We use a DCRF with two
unary terms, r̂i and r̃i, given by the network prediction and the coarse-to-fine
grid search method of [15], respectively:

min
{ri}

:

N∑
i=1

α
r
i0(ri − r̂i)

2
+ α

r
i1(ri − r̃i)

2
+

N∑
i,j

(ri − rj)
2

(
β0κ0(pi;pj) + β1κ1(pi,di;pj ,dj)

)
(6)

All DCRF coefficients are learned in an end-to-end manner using [36]. Here,
we have a different set of DCRF parameters for each material type to increase
model capacity. During both training and testing, the classifier output is used to
average the parameters from different material types, to determine the DCRF
parameters. More implementation details are in supplementary material.

5 Experiments

In this section, we demonstrate our method and compare it to baselines on a
wide range of synthetic and real data.
Rendering synthetic training dataset To create our synthetic data, we
apply the SVBRDFs on planar surfaces and render them using a GPU based
renderer [19] with the BRDF importance sampling suggested in [16]. We choose a
camera field of view of 43.35◦ to mimic typical mobile phone cameras. To better
model real-world lighting conditions, we render images under a combination of a
dominant point light (flash) and an environment map. We use the 49 environment
maps used in [19], with random rotations. We sample the light source position
from a Gaussian distribution centered at the camera to make the inference robust
to differences in real-world mobile phones. We render linear images, though
clamped to (0, 1) to mimic cameras with insufficient dynamic range. However, we
still wish to reconstruct the full dynamic range of the SVBRDF parameters. To
aid in this, we can render HDR images using in-our network rendering layer and
compute reconstruction error w.r.t HDR ground truth images. In practice, this
leads to unstable gradients in training; we mitigate this by applying a gamma of
2.2 and minor clamping to (0, 1.5) when computing the image reconstruction loss.
We find that this, in combination with our L2 losses on the SVBRDF parameters,
allows us to hallucinate details from saturated images.
Training details We use Adam optimizer [18] to train our network. We set
β1 = 0.5 when training the encoder and decoders and β1 = 0.9 when training
the classifier. The initial learning rate is set to be 10−4 for the encoder, 2× 10−4

for the three decoders and 2× 10−5 for the classifier. We cut down the learning
rate by half in every two epochs. Since we find that the diffuse color and normal
direction contribute much more to the final appearance, we first train their
encoder-decoders for 15 epochs, then we fix the encoder and train the roughness
decoder separately for 8 epochs. Next, we fix the network and train the parameters
for the DCRFs, using Adam optimizer to update their coefficients.
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Fig. 4. BRDF reconstruction results from our full method (clsCRF-pt in Table 3) on
the test set. We compare the ground truth parameters with our reconstructions as well
as renderings of these parameters under novel lighting. The accuracy of our renderings
indicates the accuracy of our method.

5.1 Results on Synthetic Data

Qualitative results Figure 5.1 shows results of our network on our synthetic
test dataset. We can observe that spatially varying surface normals, diffuse
albedo and roughness are recovered at high quality, which allows relighting under
novel light source directions that are very different from the input. To further
demonstrate our BRDF reconstruction quality, in Figure 5, we show relighting
results under different environment maps and point lights at oblique angles. Note
that our relighting results closely match the ground truth even under different
lighting conditions; this indicates the accuracy of our reconstructions.

We next perform quantitative ablation studies to evaluate various components
of our network design and study comparisons to prior work.
Effects of material classifier and DCRF: The ablation study summarized
in Table 3 shows that adding the material classifier reduces the L2 error for
SVBRDF and normal estimation, as well as rendering error. This validates the
intuition that the network can exploit the correlation between BRDF parameters
and material type to produce better estimates. We also observe that training the
classifier together with the BRDF reconstruction network results in a material
classification error of 73.65%, which significantly improves over just our pure
material classification network that achieves 54.96%. This indicates that features
trained for BRDF estimation are also useful for material recognition. In our
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Fig. 5. Materials estimated with our method and rendered under two environment
lights and three point lights (placed on a unit sphere at θ = 50◦ and various φ angles).

Method basic-pt cls-pt clsCRF-pt clsOnly-pt

Albedo (e−3) 7.78 7.58 7.42
Normal (e−2) 1.55 1.52 1.50
Rough (e−2) 8.75 8.55 8.53
Classify (%) 73.65 73.65 54.96

Table 3. Left to right: basic
encoder-decoder, adding ma-
terial classifier, adding DCRF
and a pure material classi-
fier. −pt indicates training and
testing with dominant point
and environment lighting.

Fig. 6. Qualitative comparison of BRDF
reconstruction results of different variants
of our network. The notation is the same as
Table 3 and −env represents environment
illumination.

Albedo-N Normals Rough
(e−4) (e−3) (e−2)

[1
9
]

metal 91.8 27.2 –
wood 35.9 11.2 –
plastic 12.5 17.6 –
Total 56.1 19.7 –

c
l
s
-e
n
v metal 54.9 25.2 13.4

wood 13.7 11.1 19.5
plastic 7.96 14.2 25.3
Total 30.9 18.1 18.0

c
l
s
-p
t

metal 21.7 15.1 4.06
wood 3.53 8.75 4.40
plastic 1.64 9.10 7.24
Total 11.3 11.7 4.83

Table 4. BRDF reconstruction accu-
racy for different material types in our
test set. Albedo-N is normalized diffuse
albedo as in [19], that is, the average
norm of each pixel will be 0.5.

experiments, incorporating the classifier without using its output to fuse BRDF
reconstruction results does not improve BRDF estimation. Figure 6 shows the
reconstruction result on a sample where the classifier and the DCRF qualitatively
improve the BRDF estimation, especially for the diffuse albedo.

Effect of acquisition under point illumination Next we evaluate the effect of
using point illumination during acquisition. For this, we train and test two variants
of our full network – one on images rendered under only environment illumination
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Fig. 7. The first two inputs ren-
dered under different environment
maps are very different. Thus, the
normals recovered using [19] are in-
accurate. Our method uses point
illumination (third input) which al-
leviates the problem, and produces
better normals.

Fig. 8. SVBRDF estima-
tion errors for relative in-
tensities of environment
against point light ranging
from 0 to 0.8.

(-env) and another on images illuminated by a point light besides environment
illumination (-pt). Results are in Table 4 with qualitative visualizations in Figure
6. The model from [19] in Table 4, which is trained for environment lighting,
performs slightly worse than our environment lighting network cls-env. But
our network trained and evaluated on point and environment lighting, cls-pt,
easily outperforms both. We argue this is because a collocated point light creates
more consistent illumination across training and test images, while also capturing
higher frequency information. Figure 7 illustrates this: the appearance of the
same material under different environment lighting can significantly vary and
the network has to be invariant to this, limiting reconstruction quality.
Relative effects of flash and environment light intensities In Figure 8,
we train and test on a range of relative flash intensities. Note that as relative
flash intensity decreases, errors increase, which justifies our use of flash light.
Using flash and no-flash pairs can help remove environment lighting, but needs
alignment of two images, which limits applicability.

5.2 Results on Real Data

Acquisition setup To verify the generalizabity of our method to real data, we
show results on real images captured with different mobile devices in both indoor
and outdoor environments. We capture linear RAW images (with potentially
clipped highlights) with the flash enabled, using the Adobe Lightroom Mobile
app. The mobile phones were hand-held and the optical axis of the camera was
only approximately perpendicular to the surfaces (see Figure 1).
Qualitative results with different mobile phones Figure 9 presents SVBRDF
and normal estimation results for real images captured with three different mobile
devices: Huawei P9, Google Tango and iPhone 6s. We observe that even with
a single image, our network successfully predicts the SVBRDF and normals,
with images rendered using the predicted parameters appear very similar to the
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Fig. 9. BRDF reconstruction results on real data. We tried different mobile devices to
capture raw images using the Adobe LightRoom Mobile app. The input images in were
captured using a Huawei P9 (first three rows), Google Tango (fourth row) and iPhone
6s (fifth row), all with a handheld mobile phone where the z-axis of camera was only
approximately perpendicular to the sample surface.

input. Also, the exact same network generalizes well to different mobile devices,
which shows that our data augmentation successfully helps the network factor
out variations across devices. For some materials with specular highlights, the
network can hallucinate information lost due to saturation. The network can also
reconstruct reasonable normals even for complex instances.
A failure case In Figure 10, we show a failure case. Here, the material is
misclassified as metal which causes the specular highlight in the center of image
to be over-suppressed. In future work, we may address this with more robust
material classification, potentially exploiting datasets like [3].

5.3 Further Comparisons with Prior Works

Comparison with two-shot BRDF method [2] The two-shot method of [2]
can only handle images with stationary texture while our method can reconstruct
arbitrarily varying SVBRDFs. For a meaningful comparison, in Figure 12, we
compare our method with [2] on a rendered stationary texture. We can see that
even for this restrictive material type, the normal maps reconstructed by the two
methods are quite similar, but the diffuse map reconstructed by our method is
closer to ground truth. While [2] takes about 6 hours to reconstruct a patch of
size 192× 192, our method requires 2.4 seconds. The aligned flash and no-flash
pair for [2] is not trivial to acquire (especially on mobile cameras with effects like
rolling shutter), making our single image BRDF estimation more practical.
Comparison of normals with environment light and photometric stereo
In Figure 11, we compare our normal map and the results from a) [19] (from a
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Fig. 10. A failure case, due to incor-
rect material classification into metal,
which causes the specularity to be over-
smoothed.

Fig. 11. Comparison of normal maps using our
method and [19], with photometric stereo as refer-
ence. Even with a lightweight acquisition system,
our network predicts high quality normal maps.

Fig. 12. Comparison with [2],
which requires two images, assumes
stationary textures and takes over
6 hours (with GPU acceleration),
yet our result is more accurate.

single captured under environment lighting) and b) photometric stereo [14]. We
observe that the normals reconstructed by our method are of higher quality than
[19], with details comparable or sharper than photometric stereo.

The supplementary material provides more information, including: details
of data augmentation and continuous DCRF, error distributions of BRDF, distri-
bution of material categories, material editing and relighted images and further
qualitative results on synthetic and real data.

6 Discussion

We have proposed a framework for acquiring spatially-varying BRDF using a
single mobile phone image. Our solution uses a convolutional neural network
whose architecture is specifically designed to reflect various physical insights into
the problem of BRDF estimation. We propose to use a dataset that is larger
and better-suited to material estimation as compared to prior ones, as well as
simple acquisition settings that are nevertheless effective for SVBRDF estimation.
Our network generalizes very well to real data, obtaining high-quality results in
unconstrained test environments. A key goal for our work is to take accurate
material estimation from expensive and controlled lab setups, into the hands
of non-expert users with consumer devices, thereby opening the doors to new
applications. Our future work will take the next step of acquiring SVBRDF with
unknown shapes, as well as study the role of semantic priors.
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