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Fig. 1. We propose a learning-based method that takes only five images of a scene under directional lights (a, light directions marked on circle in red) and
reconstructs its appearance (c) under a novel directional light in the upper hemisphere (marked in orange). Our method trains a fully-convolutional neural
network to jointly learn the optimal input light directions and relighting function for any scene. The network can reconstruct even high-frequency patterns
like specular shading and cast shadows (insets in c) and produces photorealistic relighting results that closely match the ground truth (b). Moreover, by
generating images for every direction in the upper hemisphere, our method can be used to relight scenes under environment map illumination (d).

We present an image-based relighting method that can synthesize scene
appearance under novel, distant illumination from the visible hemisphere,
from only five images captured under pre-defined directional lights. Our
method uses a deep convolutional neural network to regress the relit image
from these five images; this relighting network is trained on a large synthetic
dataset comprised of procedurally generated shapes with real-world re-
flectances. We show that by combining a custom-designed sampling network
with the relighting network, we can jointly learn both the optimal input light
directions and the relighting function. We present an extensive evaluation
of our network, including an empirical analysis of reconstruction quality,
optimal lighting configurations for different scenarios, and alternative net-
work architectures. We demonstrate, on both synthetic and real scenes, that
our method is able to reproduce complex, high-frequency lighting effects
like specularities and cast shadows, and outperforms other image-based
relighting methods that require an order of magnitude more images.
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1 INTRODUCTION
Rendering a scene under novel lighting is a long-studied vision and
graphics problem with applications in visual effects, virtual and
augmented reality, and product visualization for e-commerce. One
approach to relighting is to reconstruct the geometry and material
properties of the scene, and render this reconstruction under novel
lighting. However, reconstruction is an extremely challenging prob-
lem, especially for scenes with complex geometry and reflectance.

Image-based relightingmethods bypass reconstruction by directly
modeling the scene’s light transport function. Assuming distant
illumination, the light transport function, T(x,ω), maps incident
illumination from direction ω to outgoing radiance at pixel x (to-
wards the camera), and allows for the scene to be rendered under
novel distant lighting as:

I(x) =
∫
L

T(x,ω)L(ω)dω, (1)

where L(ω) is the radiance of the incident illumination from direc-
tion ω. The light transport function can be sampled by capturing
images under different lighting conditions; for example, an image of
the scene under a single directional light from directionωj , yields
the sample: Ij (·) = T(·,ωj ). Image-based relighting methods use a
set of such samples, {(Ij ,ωj ) | j = 1, 2, ...,k}, to reproduce scene
appearance, In , under a novel light,ωn . Because the light transport
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function already combines all the interactions of incident illumina-
tion with scene geometry and materials, these methods can repro-
duce photorealistic lighting effects that are difficult to reconstruct
and render.

Brute-force image-based relighting methods [Debevec et al. 2000]
densely sample the light transport function by capturing hundreds
to thousands of images of a scene; they can then relight the scene
by interpolating these dense samples. However, the light transport
function is known to be highly coherent [Mahajan et al. 2007; Nayar
et al. 2004; Sloan et al. 2003], and this has been used to reconstruct it
from a smaller number of images [Reddy et al. 2012;Wang et al. 2009]
and relight images using lower-dimensional functions [Malzbender
et al. 2001; Ren et al. 2015]. However, these methods still require tens
to hundreds of images; this in turn requires considerable acquisition
time, and often, specialized hardware.

In this work, we present a technique to render scene appearance
under novel illumination from only five images. Previous image-
based relighting methods have exploited coherence in a single light
transport function. Instead, we leverage commonalities between
different light transport functions, and estimate a single, non-linear,
high-dimensional function that maps the appearance of any scene
under a sparse set of pre-defined directional lights to the appearance
of that scene under any directional light (in the upper hemisphere).
Inspired by the success of deep learning at challenging appearance
analysis tasks [Gardner et al. 2017; Kalantari et al. 2016; Rematas
et al. 2016], we represent this function using a deep convolutional
neural network (Sec. 3.1). We train this network — that we refer to
as Relight-Net — using a large, synthetically rendered dataset con-
sisting of scenes with procedurally generated shapes and real-world
BRDFs (Sec. 3.3). Given five images of a scene under directional
lights, Relight-Net can reproduce scene appearance under any di-
rectional light lying in the visible hemisphere.

The visual quality of Relight-Net’s output is a function of the input
directions used. Therefore, we design Sample-Net, a custom layer
that chooses a sparse subset of a dense set of images. We prepend
Sample-Net to Relight-Net to construct an end-to-end network that
we train to jointly learn the optimal input lighting directions and the
relighting function (Sec. 3.2). We present an extensive evaluation of
our method, including an empirical analysis of reconstruction qual-
ity, optimal lighting configurations for different ranges of incident
illumination, and alternative network architectures (Sec 4.1). We
also propose a refinement method that makes Relight-Net robust
to small deviations from the optimal input light directions that are
likely to occur in real-world capture scenarios (Sec. 4.2).
As shown in Figs. 1, 12 and 17, our method generates photore-

alistic results for real scenes with complex high-frequency effects
like cast shadows and sharp specularities. The visual quality of our
results — generated from just five images — is better than those
from previous image-based relighting methods that require an order
of magnitude more images (see Figs. 12 and 13). Thus, our method
significantly reduces the acquisition time and complexity for image-
based relighting methods and takes a step towards making them
more practical.

2 RELATED WORK
Dimensionality of Light Transport. While changes in illumination

can lead to drastic changes in the images of a scene, previous work
has shown that these images often lie in low-dimensional subspaces.

For example, images of a Lambertian scene are known to lie on a
low-dimensional manifold [Basri and Jacobs 2003; Belhumeur and
Kriegman 1998; Ramamoorthi and Hanrahan 2001; Shashua 1997;
Sunkavalli et al. 2010]. Even scenes with complex geometry and
reflectance have been shown to have low-dimensional light trans-
port in local regions [Mahajan et al. 2007], a fact that has been
exploited for fast rendering [Ng et al. 2003; Sloan et al. 2003] and
relighting [Nayar et al. 2004]. These techniques use linear analysis
(globally or in local regions) to show the low dimensionality of light
transport for a single scene. By exploiting correlations in light trans-
port across scenes using a non-linear CNN-based representation,
our work dramatically reduces the number of images required for
scene relighting.

Relighting from Sparse Samples. While brute-force image-based
relighting methods densely sample the light transport function [De-
bevec et al. 2000], recent methods have leveraged the coherence of
the light transport function to reconstruct it using fewer samples.
One such approach is to use specially designed illumination patterns
during capture [Matusik et al. 2004; Peers and Dutré 2005; Peers
et al. 2009; Reddy et al. 2012]. Other methods reconstruct the light
transport matrix from a sampled subset of rows or columns [Fuchs
et al. 2007; Wang et al. 2009]. However, these methods still require
hundreds of images, and special acquisition systems to create the
desired illumination. In contrast, our method can relight scenes
from only five images under directional lighting.
Polynomial texture maps (PTM) [Malzbender et al. 2001] model

per-pixel radiance values as polynomial functions of lighting direc-
tions. These functions are fit to (approximately 50) captured images
and used to render the scene under novel lighting. Ren et al. [2015]
use a similar scheme, with the difference that they use shallow neu-
ral networks instead of polynomials. They demonstrate impressive
results for scenes with complex light transport, but require hun-
dreds of images to achieve this. In contrast, we exploit spatial and
angular coherence in light transport across scenes, and learn a more
complex, non-linear relighting function to achieve image relighting
with only five samples. Figure 12 shows that our results have better
visual quality than PTM run on 60 images.

BRDF estimation techniques reconstruct BRDFs from images
captured under varying illumination. Nielsen et al. [2015] and Xu et
al. [2016] use a linear data-driven BRDFmodel to derive optimal light
directions for BRDF estimation from sparse samples. We propose a
technique to learn optimal lighting directions for high-quality scene
relighting with a non-linear CNN-based reconstruction method.

Photometric Stereo-based Scene Reconstruction. Our acquisition
setup is similar to Photometric Stereo methods which reconstruct
surface geometry (and reflectance) from images of a scene under
varying illumination [Woodham 1980]. While recent techniques can
handle non-Lambertian BRDFs [Chandraker 2016; Goldman et al.
2010; Hui and Sankaranarayanan 2017; Oxholm and Nishino 2016]
they either assume homogeneous BRDFs or require hundreds of
image to reconstruct shape and spatially-varying BRDFs. In addition,
Photometric Stereo methods often do not consider cast shadows,
global illumination, and other light transport effects. In contrast,
our method is able to reproduce these effects from fewer samples
and outperforms Photometric Stereo-based methods (see Fig. 12).

Deep Learning for Appearance Analysis and Synthesis. Recently,
deep learning-based methods have been successfully applied to
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Fig. 2. An overview of our network. We stack a dense set ofm input images and light directions (a) into a 5m-channel input that is passed to Sample-Net (b,
Sec. 3.2). Sample-Net consists of a trainable weight matrix, W, that is multiplied by temperature parameter, αp and passed through a softmax layer. This
constructs a sparse sampling matrix, Ws , that multiplies the dense input to produce the sparse 5k -channel sample set (c) that is the input to Relight-Net A (e,
Sec. 3.1). Relight-Net A is a fully-convolutional encoder-decoder; the encoder downsamples the input samples to an intermediate representation. We pass the
output light direction, ωn , (d) through fully-connected layers and replicate and concatenate it to the intermediate representation. The decoder upsamples this
to recover the output relit image (f). We use skip links to introduce high-frequency features into the output. We train Sample-Net and Relight-Net jointly to
learn both the optimal samples and the relighting function for relighting any scene (Sec. 3.4). At test time, we only use Relight-Net to relight the input sparse
samples (c) under the input novel lighting (d).

inverse rendering and scene reconstruction problems such as re-
flectance map and illumination estimation [Gardner et al. 2017;
Georgoulis et al. 2017; Hold-Geoffroy et al. 2017; Rematas et al.
2016], reflectance capture [Li et al. 2017; Liu et al. 2017], and depth
and normal estimation [Bansal et al. 2016; Eigen and Fergus 2015].
These methods make simplifying assumptions about the scene (for
example, considering only a single object) to make the reconstruc-
tion tractable. We bypass reconstruction, and directly generate relit
images for complex scenes. Deep networks have also been used
for view interpolation for relatively unstructured cameras [Flynn
et al. 2016] and light field cameras [Kalantari et al. 2016]. Our work
assumes a fixed viewpoint and attempts to interpolate/extrapolate
lighting.

3 LEARNING IMAGE-BASED RELIGHTING
Given a small set of images of a scene under individual light sources,
we want to render the scene under novel lighting. We assume that
the scene is imaged from a fixed viewpoint and that the illumi-
nation is distant. We also assume that illumination from behind
the scene makes a minimal contribution to appearance and can
be ignored. Under these assumptions, the light transport matrix,
T(xi ,ωj ), represents the proportion of incident radiance from direc-
tion,ωj (sampled from the upper hemisphere, L) that reaches pixel
xi . Images of the scene under single directional lights represent
column-wise samples of the light transport matrix, i.e., Ij = T(:,ωj ).
Given a set of k such samples — images of the scene, I1, I2, ...Ik ,

captured under predefined directional lights,ω1,ω2, ...,ωk respec-
tively — the goal of our work is to reconstruct the image, In , that
would be produced by a novel directional light,ωn , via a relighting
function, Φ(·):

In = Φ(ωn ; I1,ω1; I2,ω2; ...; Ik ,ωk ) = Φ(ωn , S1, S1, ..., Sk ). (2)

We hypothesize that Φ(·) is scene-agnostic and can transform sparse
input samples, S = {Sj } = {(Ij ,ωj )}, of any scene into a rendering
of that scene in novel lighting. We believe this is possible because

light transport is highly coherent; our formulation enables this by
allowing the radiance at a pixel to potentially be a function of the
entire scene under all the sparse light directions.
We model the relighting function, Φ(·), as a deep convolutional

neural network (CNN) that we refer to as Relight-Net. We train
Relight-Net using a large synthetic dataset consisting of procedu-
rally generated shapes rendered with complex spatially-varying
BRDFs, and demonstrate that it can reconstruct high-frequency
light transport effects like specularities and cast shadows. Relight-
Net is illustrated in the right half of Fig. 2 and described in Sec. 3.1.
The quality of the reconstruction from Relight-Net depends on

the pre-defined lighting directions that we use as input samples.
Intuitively, the ability to generalize to new lighting will be limited if
the input directions all lie very close together, and will improve as
they span the full incident hemisphere. Therefore, we also propose
a scheme to learn the optimal input sample directions that lead to
the best relighting results. Specifically, we densely sample the space
of input light directions, and design a layer that selects a sparse
set of these directions. We call this layer Sample-Net and describe
it in Sec. 3.2 (also see left half of Fig. 2). We prepend Sample-Net
to Relight-Net to construct an end-to-end network that is trained
jointly to estimate both the optimal light directions and the corre-
sponding relighting function.

3.1 Learning to Relight: Relight-Net
At the core of our method is Relight-Net, a deep fully-convolutional
neural network that approximates Eqn. 2. We explore two architec-
tures for Relight-Net — the first is a conventional encoder-decoder
architecture, while the second disentangles the direct and global
illumination components of the scene.

Relight-Net A. Our first network architecture, Relight-Net A is
designed to directly generate a relit image from sparse input samples,
S = {(Ij ,ωj ) | j = 1, ...,k}. To pass the input light directions
ωj = (sj , tj ) (2D coordinates of the direction vector projected to the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 126. Publication date: August 2018.



126:4 • Zexiang Xu, Kalyan Sunkavalli, Sunil hadap, and Ravi Ramamoorthi

z = 0 disk) to the network, we construct 2-channel constant images
with the same resolution as the input images and s and t in each
channel respectively. Concatenating this to the input RGB image
yields a 5-channel input per-sample; stacking the k samples leads
to a 5k-channel input to Relight-Net A.

As illustrated in Fig. 2, Relight-Net A uses a U-net-style encoder-
decoder architecture [Ronneberger et al. 2015]; the encoder takes
the 5k-channel input, passes it through a series of convolutional
layers (with stride 2 for downsampling), each followed by batch
normalization (BN) and ReLU layers. The target lighting direction,
ωn , is passed through fully-connected layers (with tanh activation
layers after each linear operation) to expand the 2-dimensional vec-
torω = (s, t) into a 128-dimensional feature vector. We replicate this
feature vector spatially to construct a 128-channel feature map that
is concatenated with the encoder output. The decoder convolves
the concatenated encoder output and upsamples the features with
deconvolution (transpose convolution) layers, where both convo-
lution and deconvolution are followed by BN and ReLU layers. We
use skip connections from the encoder to the decoder to improve
per-pixel details in the output. The decoder ends with 2 convolu-
tion layers followed by a sigmoid activation to produce the relit
image. We train the network using an L2 loss on the output images,
LA = ∥In − Iдtn ∥2, where Iдtn is the ground truth image rendered
with a directional light source atωn .

The structure of Relight-Net A allows it to leverage two forms
of coherence in a transport matrix: the convolutional layers exploit
spatial coherence by aggregating over the network’s receptive field,
and combining feature maps across channels exploits correlations
over lighting directions. This allows it to handle diffuse and specular
reflectance, shadowing and other global illumination effects.

Relight-Net B. Relight-Net A is designed to directly regress a relit
image from input samples, and does not have any rendering-specific
constraints. We design an alternative architecture — Relight-Net B —
to evaluate if the explicit inclusion of rendering priors can improve
the relighting results. Specifically, we know that the appearance of
a scene under a single directional light,ωn , can be represented as a
sum of direct and global illumination components: In = Idn ∗Vn + Iдn ,
where Idn , Vn , and Iдn are the direct component, per-pixel visibility
map w.r.t.ωn , and global illumination components respectively. We
train Relight-Net B to explicitly decode each of these components.
As shown in Fig. 3, Relight-Net B consists of a single encoder,

connected with three separate decoders. The three decoders gener-
ate Idn , Vn , and Iдn , which are then combined to reconstruct In . The
encoder and decoders are identical to those used in Relight-Net A.

Since we use synthetic rendered data to train the network, we can
generate ground truth data for direct illumination images, visibility
maps, and final relit images and use them as supervision. We ren-
der direct component, Id,дtn , by computing local per-pixel shading
without considering visibility. We construct the visiblity map, Vдt

n ,
using shadow ray casting. The final loss of Relight-Net B is the sum
of three L2 losses of the three supervised terms:
LB = ∥Idn − Id,дtn ∥2 + ∥Vn − Vдt

n ∥2 + ∥In − Iдtn ∥2.

3.2 Learning Optimal Light Samples: Sample-Net
Relight-Net produces relit images from a set of sparse input samples
captured under fixed, predefined directions, and this form of struc-
tured input contributes to the quality of the results. However, the
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Fig. 3. Relight-Net B. Similar to Relight-Net A, we use an encoder-decoder
architecture. However, Relight-Net B has a single encoder and three separate
decoders to reconstruct the direct illumination, visibility map, and indirect
illumination images, that are then combined to reconstruct the relit output.
We use skip links from the encoder to all the decoders to recover high-
frequency details.

specific choice of directions to use can have a substantial bearing on
relighting quality, and it is not clear apriori what the optimal light-
ing configuration is. One choice for learning the optimal lighting
directions is to regress these parameters using the network. How-
ever, changes in light direction can lead to complex changes in scene
appearance that are challenging to model and are not differentiable
w.r.t. to the lighting (e.g., changes in shadows). Instead, we densely
sample the domain of incident illumination (i.e., the upper hemi-
sphere, L), pre-render images of the training scenes under these
lights, and pose the problem of estimating the optimal samples as
one of selecting a sparse subset of these dense samples.

Let the dense set of input samples be given byD = {(Ij ,ωj ) | j =
1, ...,m}. By vectorizing each (Ij ,ωj ) pair and stacking these sam-
ples, we can construct the 5p ×m dense sample matrix D, where p
is the number of pixels in the input images. Selecting a subset of
these samples can be done as:

S = D WS , (3)

where WS is am × k binary matrix (k << m), where each column
has a single 1 entry (corresponding to the sample from D that is
“selected”).

Sample-Net is a trainablem × k W matrix that post-multiplies
the dense input samples to create a sparse set of samples. However,
we need to enforce that this matrix is binary and each column only
has a single 1. Inspired by Chakrabarti et al. [2016], we do this by
applying a softmax layer to each column of W:

WS = softmax(αpW), (4)

where αp is a scalar parameter that gradually increases from 1 to
∞ during each epoch, p, of the training process. Because of the
form of the softmax layer, σ (z)j = exp(zj )/

∑
exp(zk ), using a larger

αp makes each column of WS sparser. We initialize W with all
1s. As a result, in the early stages of training, samples in S are a
linear combination of samples in D, but as αp goes to infinity, each
column of WS gradually converges to a single non-zero element that
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corresponds to the chosen optimal sample (see Fig. 6 in Section 4.1).
We use a quadratic model αp = βp2, where β is a tunable hyper
parameter.

While Eqn. 3 vectorizes each input sample into a 5p × 1 vector, in
practice we represent them as 5-channel inputs and apply the same
value of Ws to each channel of the sample. Figure 2 illustrates how
we combine Sample-Net and Relight-Net. In Sec. 3.4 we describe
how we train them jointly.

3.3 Generating training data
We train our networks with a synthetic rendered dataset; this allows
us to control all aspects of our training scenes and also lets us create
ground truth data for relit images and intermediate results (like
those needed by Relight-Net B).
We generate primitive shapes (cubes, ellipsoids, and cylinders)

with random parameters, and apply height-fields with varying fre-
quencies of variation. This gives us a large set of random shapes; we
construct the scene geometry by combining multiple (1 to 9) shapes
after applying random translations and rotations. We create 600
scenes using this method with 500 for training and 100 for testing.
We use material definitions from the Adobe Stock 3D mate-

rial dataset1 — a dataset of 694 realistic spatially-varying BRDFs
(SVBRDFs). This dataset uses a physically-based microfacet BRDF
model [Burley 2012] (that uses the GGX distribution [Walter et al.
2007]) and each material is represented by high resolution (4096 ×
4096) diffuse maps, roughness maps and normal maps. We texture
the shapes with random crops from these SVBRDFs (see Fig. 4). We
separate the SVBRDFs into training set (594 materials) and test set
(100 materials); the materials used in the synthetic test scenes are
thus never seen during training.

We render 512 × 512-resolution training and testing images with
Mitsuba [Jakob 2010] using bidirectional path tracing [Lafortune
and Willems 1993] with 196 samples. To make our method applica-
ble to low dynamic range images captured by conventional cameras,
we apply a gamma of 2.2 and clip the images at 1. We use a combi-
nation of Mitsuba’s mixturebsdf, roughconductor, diffuse, and
normalmap plugins to render the materials.

Figure 4 illustrates some of our rendered scenes. While the com-
position of these scenes may not be realistic, note that they locally
exhibit the kinds of complex light transport that are present in the
real world, including complex surface reflections, cast shadows, and
inter-reflections. As we show in Figs. 1, 12 and 17, this allows us to
learn a relighting function that generalizes well to real scenes.

3.4 Training Relight-Net and Sample-Net
As discussed in Sec. 3.2 (and illustrated in Fig. 2), Sample-Net is
designed to be jointly trained with Relight-Net; given a dense set
of scene samples, Sample-Net selects a sparse subset that can be
input to Relight-Net to produce the relit result. To train them jointly,
we start by densely sampling the incident illumination domain, Lθ
— a θ -degree cone towards the viewpoint as shown in Fig. 5. This
gives us a large set of discrete lights Ωθ = {ωj |j = 1, 2, ..,mθ }. We
render each training scene, i , under every light in this set to create
the dense input samples Di,θ = {(Iдti, j ,ωj )|ωj ∈ Ωθ }. We train the
combined Sample-Relight-Net in an end-to-end fashion to minimize
the Relight-Net loss function across all scenes and all output light

1https://stock.adobe.com/3d-assets

Fig. 4. Training data. Our scenes consist of multiple (1−9) random primitive
shapes that are augmented with varying levels of height fields (top left).
We texture these shapes with SVBRDFs from the Adobe Stock 3D Material
dataset (top right) and render them using Mitsuba (bottom).

directions:

L(Ws ,Φ) =
∑
i

∑
ωj ∈Ωθ

∥Φ(ωj ;Di,θ WS ) − Iдti, j ∥2, (5)

where Di,θ is constructed from Di,θ as described in Sec. 3.2. This
loss function evaluates the error of reconstructing images under
every light in Ωθ from images under only k lights from Ωθ .
We crop 10 128 × 128 patches from each rendered image Iдti, j

giving us 5000 scene-patches for our training. Each training scene-
patch has a correspondingDi,θ . Since training Sample-Net requires
loading Di,θ completely, we are only able to train with a small
batch size. This in turn implies swapping Di,θ out repeatedly and
can lead to significant I/O overheads. Instead we organize training
as follows: in each batch, we load Di,θ for 4 random scenes and
randomly pick 18 images (Iдti, j ,ωj ) from each Di,θ as targets for
Relight-Net to reconstruct. This forms a batch of 4 scenes for Sample-
Net training and 72 images for Relight-Net training. We use ADAM
with 0.0001 as the learning rate for joint training. β from 5 to 8
generally works well, and we use β = 6. We find that our networks
typically converge after 16 epochs. Our final learned models, scenes,
rendered images and the code for generating them are released on
the project website.2

Since Relight-Net is fully convolutional, at test time we can apply
it to arbitrary resolution images, although it only considers appear-
ance within a 128 × 128 window size. Moreover, while Relight-Net
has been trained using only the discrete lights in Ωθ , we show that it
can be used to relight using any directional light on the continuous
domain Lθ .

4 ANALYSIS ON SYNTHETIC DATA
4.1 Analysis of Relight-Net and Sample-Net
In this section, we present analysis and empirical evaluations of the
different components of our network. Unless otherwise specified, we
use the Relight-Net A for testing. Later in the section, we compare
Relight-Net A and Relight-Net B.

2http://viscomp.ucsd.edu/projects/SIG18Relighting
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Fig. 5. Incident illumination domains and samples. As shown on the right,
we model scene appearance under directional lights that lie on Lθ , a θ
degree cone on the hemisphere pointing towards the viewing direction.
On the left we illustrate the hemisphere and different light domains, L30,
L45, L60, L90, in a 2D plane. We also show Ω90, the densely sampled
1052 discrete directions from L90. Other Ωθ are constructed from Ω90 as
Ω30 = Ω90 ∩ L30, Ω45 = Ω90 ∩ L45, Ω60 = Ω90 ∩ L60.

Light domain vs. number of sparse samples. By training Sample-
Net and Relight-Net to minimize Eqn. 5, we can learn to relight a
scene from any light direction in Lθ . To investigate the effect of the
size of this domain (in terms of cone angle, θ ) on the performance
of our network, we train our network on four light domains: θ =
{30, 45, 60, 90}. We create Ω90 by uniformly sampling 38 values for
the (s, t) coordinates of light directions in the domain (−0.952, 0.952)
and rejecting samples outside the unit disk. This leads tom90 = 1052
distinct light directions in L90. Ω30,Ω45 and Ω60 are subsets of Ω90,
withm30 = 256,m45 = 540 andm60 = 804 directions, respectively.
Details about Lθ and Ωθ are shown in Fig. 5.

In addition to the size of the illumination domain, the quality of
our reconstructions depends on the number of sparse samples that
are input to Relight-Net. In particular, as the size of the illumination
domain increases, we expect that we would need more samples to
preserve reconstruction quality. Therefore, we analyze the perfor-
mance of our full Sample-Net-Relight-Net architecture for 12 differ-
ent light domain size/sample configurations: θ = 30,k = {2, 3, 4};
θ = 45,k = {4, 5}; θ = 60,k = {5, 6, 7}; and θ = 90,k = {5, 6, 7, 8} .

Learnt optimal samples. Over the course of our joint training pro-
cess, Sample-Net gradually converges to k optimal samples. In Fig. 6,
we illustrate this for θ = 90 and k = 5 samples. WS starts off as a
mixing of many samples and gradually converges to 5 optimal sam-
ples. As we would expect intuitively, these samples are distributed
over L90.
Figure 7 indicates the learnt optimal directions for 4 represen-

tative networks, one for each light angle setting. We can see that
when k = 3, 4, the optimal directions are spread in a circle around
the center of the cone; setting k = 5 adds a direction near the center
of the cone, i.e., nearly collocated with the viewpoint. Also note
that all optimal directions are not placed at the edge of lighting
domain, indicating that Sample-Net chooses directions that allow
Relight-Net to both interpolate and extrapolate the input samples
to produce relit results. Note that Sample-Net could have converged
to a local minima, as is often the case with deep networks. However,
in practice we have found that these directions lead to better re-
constructions than arbitrarily chosen directions and other sampling

 0.5

Epoch  0

5

10

15

 0.0  1.0

 1  2  3  4

Fig. 6. Evolution of the optimal sparse samples during joint training for
(θ = 90, k = 5) ; each column represents the values from one column of WS .
Starting from a flat distribution, each column of WS gradually becomes
peakier, till it converges to a single sample at epoch 15.

 = 30, k = 3  = 45, k = 4  = 60, k = 5  = 90, k = 5
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Fig. 7. Learnt optimal directions for several lighting configurations. We
represent directions using the standard (θ, ϕ) spherical parameterization.

strategies based on heuristics, as we will discuss shortly. Optimal
directions for the remaining 8 (θ ,k) configurations are shown in
the supplementary document.

Reconstruction quality. We use our trained networks to relight
the 100-scene test set under all the lighting directions in the trained
light domain, and aggregate the errors. We perform this analysis
for different choices of (θ ,k) and illustrate the results in Fig. 8. From
these error distributions, we can make the following observations
about Relight-Net: 1) it produces very low reconstruction errors for
lights close to the input samples; 2) it produces high-quality results
for interpolated light samples, i.e., output light directions that lie
within the convex hull of the input light directions; 3) while it is
able to do extrapolate to relight scenes under lights that lie outside
the convex hull of the sparse input samples, the errors are larger
that those for interpolation. While each scene might have its own
optimal sampling directions based on its geometry and reflectance
properties, the directions in Fig. 7 are optimal for all scenes. In
addition, the optimal directions are chosen to let Relight-Net trade-
off errors in interpolation and extrapolation scenarios.
As expected, the reconstruction error is lower for smaller light

domains; for example, the network trained for (θ = 45,k = 5)
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Fig. 8. Reconstruction errors for different lighting configurations. On the left, we visualize reconstruction quality (in PSNR) for each test light direction
aggregated over all our test scenes. Errors are lowest for directions close to the input samples, and are quite low in the convex hull of the input samples even
for directions away from input samples. The average PSNR across all light directions is listed under each figure. On the right, we show relighting results for 4
real scenes (a,b,c,d) captured with different light setups and compare them against ground truth. The corresponding output directions are marked on the left.
Our reconstructions are very accurate for (θ = 30, k = 3), (θ = 45, k = 4), and most light directions in (θ = 90, k = 5). Note that the (θ = 90, k = 5) setup can
fail for single directional lights at extreme grazing angles (d), but this has minimal impact when integrating over an environment map as seen in Figs. 1 and 17.

has a PSNR of 26.01 vs. 23.12 for (θ = 90,k = 5). Our network
with (θ = 45,k = 4) produces near-photorealistic results for most
directions in L45. For θ = 90, i.e., the entire upper hemisphere, the
lighting setup we have showcased in this paper, (θ = 90,k = 5),
produces accurate results across much of the light domain. This
network might blur some high-frequency effects like sharp shadows
and small specularities. However, these issues are most evident
when we render the scene under high-frequency directional lights;
rendering the scene under environment map illumination leads to
results that are perceptually indistinguishable from ground truth
images (see Fig. 15). Moreover, using additional samples, e.g., k = 8,
also improves performance. These experiments suggest that we can
use Sample-Net to further optimize the sample configuration for
specific scenes or capture scenarios.

Comparisons against alternative sampling strategies. To evalu-
ate the quality of our learnt samples, we compare them against
heuristics-based strategies that produce well-distributed samples.
We choose two methods — random dart throwing and k-means
clustering, and evaluate them on the (θ = 90,k = 5) configuration.
To ensure that random dart throwing leads to well-distributed

samples, we specify a minimal threshold on the distance between
two samples. We also apply the same minimal threshold on the dis-
tance from the boundary of the light domain, i.e., the grazing angle.
Without this condition, we found that samples tend to converge to-
wards the boundary of the domain (which has more samples) which
leads to poor relighting performance. Since we do not know the

 18>=30 24.5

22.93 22.73

(a) (b)

23.08 22.57 23.12

(c) (d) (e)

    Dart-throwing     K-means cluster     Our result

 
PSNRs:

Fig. 9. Comparison with two random dart throwing sample sets (a,b), two
representative k-Means clustering samples (c,d), and our samples (e). Our
samples produce higher average PSNR.

threshold distance apriori, we generate sample sets with gradually
increasing thresholds and pick the value, 40◦, which allows only
five samples. Our other baseline uses k-means clustering to group
the 1052 samples in Ω90 into 5 clusters. We found that k-means
clustering generally converges to two types of distributions: either
one central direction with four directions distributed around it, or
five directions around the center of the light domain (see Fig. 9(c,d)).
We randomly select two results of random dart throwing and two
of k-means clustering (from the two representative distributions).
We train the Relight-Net by using these samples as the input and
using the same 5000 scene-patches Di,θ as training data.

We test these trained networks on the 100-scene test and compare
the reconstruction error. As shown in Fig. 9, our Sample-Net samples
significantly outperform the random dart throwing ones (Fig. 9 (a,b)).
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23.12Average PSNR: 23.20
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Relight-Net A Relight-Net B

Relight-Net 
          A

Relight-Net 
         B

Ground 
Truthdirect component PSNR: 23.04

visibility map PSNR: 12.41

Visibility Map Direct Component Visibility MapDirect Component
Relight-Net B Ground Truth

Fig. 10. Relight-Net A vs. Relight-Net B.We compare relighting errors across
all light directions for our two Relight-Net architectures for the (θ = 90, k =
5) lighting configuration using the same optimal light directions (top left).
Overall PSNR and PSNR for each Relight-Net B component are also listed.
Relight-Net B has marginally better performance but visual inspection (top
right) for one scene and light direction (marked by the arrow on the left),
shows that it produces shadows that are better sometimes (green inset) and
inaccurate at other times (blue inset). We also show the visibility map and
direct component from Relight-Net B (bottom).

k-means clustering is not reliable either; while the first distribution
(Fig. 9 (c)) approaches our performance, the second distribution is
significantly worse (Fig. 9 (d)). Moreover, it is not easy to predict
what the relighting performance of any of these sampling strategies
would be, without training Relight-Net for each of them. In contrast,
using Sample-Net in conjunction with Relight-Net allows us, in a
single training pass, to jointly learn the optimal samples and the
relighting function that maximizes relighting performance.

Relight-Net A vs. Relight-Net B. We evaluate the effect of introduc-
ing rendering constraints into the relighting function, by comparing
the performance of Relight-Net A and Relight-Net B for the same
(θ = 90,k = 5) configuration. For this experiment, we first trained
Sample-Net+Relight-Net A to learn the optimal input directions
and then trained Relight-Net B with the same directions. Fig. 10
shows a comparison of the relighting error for these two networks.
While Relight-Net B has marginally better average performance
(PSNR of 23.20 vs. 23.12 for Relight-Net A), it does not consistently
outperform Relight-Net A in terms of visual quality. This might be
attributable to the difficulty of learning the high-frequency visibility
function (PSNR of 12.41). In contrast, the reconstruction of the direct
illumination component is quite accurate (PSNR of 23.04).
We chose Relight-Net A for all the experiments in this paper

because it matches Relight-Net B’s relighting performance and is
faster to evaluate. However, Relight-Net B’s scene decomposition
results suggest that using this technique for scene reconstruction
could be an interesting direction of future work.

4.2 Refining Relight-Net
After joint training, Relight-Net can relight a scene from the k
sparse samples from the learnt optimal directions. However, this
would require an acquisition system to recreate these optimal light
directions exactly, which can be challenging in practice. In order
to reduce this requirement, we refine Relight-Net by training it

Before Re�nement After Re�nement

Average PSNR: 23.12 24.15

 18>=30 24.5

  = 90, 
k = 5：

Average PSNRs for inputs away
from the optimal

All 1-5
degree

5-10
degree

23.82 24.02 23.59

Fig. 11. Evaluation of network refinement. On the left we compare recon-
struction errors for optimal inputs for Relight-Net before and after refine-
ment with (θ = 90, k = 5). Refinement improves the results because it
has been trained on a larger dataset. Moreover, the refined network also
performs well on two scenarios of non-optimal input directions that are
1–5◦ and 5–10◦ off the optimal. As the average PSNR (computed across our
entire test set) for these scenarios shows, the refined network is quite ro-
bust to these deviations, and in fact outperforms the non-refined network’s
performance on optimal inputs.

to handle input light directions in the local neighborhood of the
optimal directions. Note that we are able to do this because the input
light directions are one of the inputs to Relight-Net.
To refine Relight-Net, we generate a new training dataset com-

prised of the original 500 training scenes as well as a new set of
5000 scenes (for a total of 5500 scenes). For each scene, we render
a new set of k random input samples (sampled within a 10◦ cone
around the learnt optimal light directions) and another 50 output im-
ages under random light directions over the entire Lθ cone. These
images are generated as described in Sec. 3.3. As before, we refine
Relight-Net using 10 random 128 × 128 crops from each image.
Figure 11 compares Relight-Net error distributions before and

after refinement on the same test dataset. We can see that refinement
improves reconstruction quality (23.12 before refinement vs. 24.15
after) even when we use the optimal input directions that the joint
optimization selected. This is a consequence of refining Relight-
Net on a larger (5500 vs. 500) scene dataset; while we could have
trained our combined Sample-Net+Relight-Net on this dataset, the
large computational requirements to train Sample-Net make this
intractable. More importantly, the refined network is able to handle
inputs that are away from the optimal directions. To evaulate this,
we randomly select two sets of 10 input directions that are 1–5◦
and 5–10◦ away from the optimal directions, and test relighting
performance for these directions on our entire test dataset. The
average PSNRs of these 2 settings are shown on the right in Fig.
11. We can see that even when the inputs vary by 5–10◦ from the
optimal directions, the refined network achieves 23.59 average PSNR,
and in fact, outperforms the non-refined network’s results with the
optimal input samples. As we show in our experiments on real data,
this robustness to the input directions allows our method to produce
high-quality results even for datasets captured by acquisition setups
that do not exactly meet our specifications.

5 RESULTS AND EVALUATION
We now present an evaluation and comparisons of our method on
both synthetic and real data. Unless otherwise specified, the results
in this section were generated using our refined Relight-Net Amodel
trained for the (θ = 90,k = 5) setting. We also provide additional
examples and results (including videos under moving lights) in the
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Fig. 12. Comparisons with Photometric Stereo [Hui and Sankaranarayanan 2017] (with 5 and 15 samples), and Polynomial Texture Maps [Malzbender et al.
2001] (with 6, 15, and 60 samples) on a synthetic test scene (top) and a real scene captured by [Einarsson et al. 2006] (bottom, the input light directions here
deviate from our optimal directions by 3-7◦). The input images and corresponding lights are shown on the left and the PSNR of the result is listed below the
images. Our results have some of the highest PSNR scores even when compared to methods with more input images. Moreover, our results have better visual
quality and reproduce cast shadows and specularities better (insets).

accompanying supplementary video. We encourage readers to zoom
into the images in the paper to look at image details.

Datasets. We evaluate our method on the synthetic scenes from
our 100-scene test data, as well as three different real datasets — one
that we captured ourselves using a gantry-based acquisition system
(Figs. 8 and 17), and additional scenes captured with a light stage
setup by Einarsson et al. [2006] (Figs. 12 and 17) and Schwartz et
al. [2011] (supplementary video and Fig. 14). While we could control
our gantry to capture images under our learnt optimal directions,
the latter two datasets do not have these directions, and the closest
directions deviate by an average of 4◦. Our results for these scenes
rely on the refined network’s robustness to input light directions.

Timing. We can relight a scene under a directional light using a
forward pass through our network model; this takes 0.03 seconds
on a NVIDIA Geforce 1080Ti for a 512x512-resolution image.

Comparison with Photometric Stereo-based reconstruction. As men-
tioned in Sec. 1, one approach to image relighting is to recon-
struct the scene and re-render it under novel lighting. To compare
against this approach, we use a state-of-the-art Photometric Stereo
method that can handle spatially-varying BRDFs [Hui and Sankara-
narayanan 2017]. Fig. 12 shows comparisons with this method when
run on 5 and 15 images. Even a state-of-the-art Photometric Stereo
method has large errors when reconstructing a scene from a small
number of images, resulting in significant artifacts in the relit re-
sults. Moreover, this method does not handle non-local effects like
cast shadows and inter-reflections. In comparison, our results are
significantly better in terms of both PSNR and visual quality.
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Comparison with image-based relighting methods. Most image-
based relighting methods are designed for dense input samples cap-
tured using specialized hardware. Therefore, we choose two repre-
sentative methods —Polynomial Texture Mapping (PTM) [Malzben-
der et al. 2001] and barycentric interpolation — and compare their
performance on different sample sets to our results (Fig. 12 and
Fig. 13). For PTM, we fit order-2 polynomials to 6, 15, and 60 input
images, and order-5 polynomials to 60 input images. Our network
outperforms PTM in most of these settings on both synthetic and
real data. Using order-5 polynomials and 60 samples (12× as many
as we use) allows PTM to outperform our PSNR on a real scene, but,
unlike our network, it can’t reconstruct specularities and completely
blurs shadows. Moreover, PTM’s performance does not consistently
improve when we add more samples or use higher-order polynomi-
als. This is possibly because polynomials are poor approximations of
light transport, especially in the presence of cast shadows, and using
an L2 error to fit them can lead to unstable results. In general, PTM
was designed for largely planar scenes with minimal cast shadows.
In contrast, our method can handle more complex scenes with a
fraction of the number of samples.

Barycentric 
Interpolation
64 Samples

Barycentric 
Interpolation
197 Samples

Barycentric 
Interpolation
345 Samples

Our Results
with 5 Samples Ground Truth

PSNR: 23.15 26.95 27.47 23.90

Fig. 13. Comparisons with barycentric interpolation with increasing sam-
pling resolution (top row, samples shown as gray dots and relighting direc-
tion in yellow). Ourmethod has a better PSNR than barycentric interpolation
with 64 samples. At higher resolutions, barycentric interpolation produces
better PSNR, but the subjective visual quality is worse. For example, there
are significant ghosting artifacts at shadow boundaries (inset, bottom row).

We analyze how many samples are required for barycentric in-
terpolation to approach our result quality in Fig. 13. We uniformly
sample the upper hemisphere with 64, 197 and 345 directions. We
render a synthetic scene at these directions, and use these images to
do barycentric interpolation for the frontal hemisphere. As shown
in Fig. 13, our model produces a reasonable result with plausible
(though slightly jagged) shadows even for a novel relighting direc-
tion that is outside the convex hull of the input samples. Our method,
with 5 samples, has a PSNR of 23.90 vs. 23.15 for barycentric interpo-
lation with 64 images. As the resolution of the sampling is increased,
barycentric interpolation starts to outperform our result quantita-
tively (PSNR of 26.95 and 27.47 for 197 and 345 images). However,
the visual quality of our result is still superior; the barycentric inter-
polation results have significant ghosting artifacts even at 345 input
images. These issues are exacerbated in animations with a moving
light (please refer to the supplementary video); our reconstructed

shadows and specularities move smoothly and intuitively, while the
barycentric interpolation results exhibit significant spatial ghosting
and temporal aliasing.

Directional and environment map relighting. Using a network
trained to handle directional lights in L90 allows us to relight a
scene under (the upper hemisphere of) environment lighting by
rendering images under every direction in the environment map
and summing them using weights based on the environment map
radiance values. We use a 64 × 64 hemispherical environment map
( 3000 output directions). Note that our network design allows us to
pre-compute the encoder features for the input images once, and
only process the decoder for different light directions.

Figure 15 shows a comparison of our results for both directional
and environment map illumination with ground truth images for
four synthetic test scenes. Note that our results under directional
lighting match the ground truth images closely with some minor
artifacts along sharp shadow boundaries. Moreover, our results
under all-frequency environment lighting — generated from only
5 sparse samples — are visually imperceptible from ground truth
results. This indicates that, when rendering under environment
illumination, the accuracy of our method at relighting most of the
directions inL90 is sufficient to compensate for the errors that occur
at grazing angles (as shown in Fig. 8).
As Fig. 17 demonstrates, we observe similar behavior in real

scenes exhibiting a wide range of materials (diffuse to highly specu-
lar), geometries (arbitrary shapes arranged in complex ways), and
scene scales and layouts (small to medium to large objects). Our
network faithfully reproduces appearance under novel directional
lights, and creates photorealistic results under environment map
illumination. The bottom two results in this figure come from the
[Einarsson et al. 2006] whose light samples deviate from our exact
optimal light directions by 3◦ to 7◦. Yet, we obtain high-quality
results illustrating the ability of our network to relight using light
directions that are not perfectly optimal.

Our Result Ground Truth Environment Map

Fig. 14. Limitations. Our method fails to recover cast shadows caused by
highly non-convex geometry. However renderings under environment map
illumination are still plausible as shown in the rightmost column.

Limitations. While our method produces results of a high quality,
some artifacts still remain. While we capture the general shape of
cast shadows, the edges can have artifacts (Fig. 13). We train our net-
work on 128× 128 image patches; this determines the receptive field
of the features and the spatial scale at which we can analyze scene
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Fig. 15. Relighting results from five samples for synthetic data (first column, input/output light directions marked on the black circle in gray/yellow). Our
results match the ground truth images quite faithfully (left vs. right of second column) with some errors near hard shadow boundaries. Moreover, these errors
are visually imperceptible under all-frequency hemispherical environment map illumination (third and fourth columns, environment maps in inset).

 = 90, k = 5  = 90, k = 8 Ground Truth

Fig. 16. Comparison between k = 5 vs k = 8 for θ = 90. In this case, the
incident light causes very significant cast shadows, leading to a shadow
artifact with sharp corners (noted by the white arrow) in the k = 5 result.
The artifact goes away when we use k = 8 samples. The artifact is also
mitigated under environment lighting (bottom).

appearance. Consequently, our method cannot handle non-local
appearance changes that happen at a larger scale, for example shad-
ows caused by grazing angle lighting (Fig. 8) or highly non-convex

geometry (Fig. 14). Our method might blur very sharp specularities
(Fig. 17). As shown in Figs. 14 and 16, these issues can be ameliorated
using more samples or when rendering under environment lighting.

Our results are also limited by our training data, and the assump-
tions made to generate it. For example, we assume that objects in
the scene are opaque and don’t model complex effects like glints.
Increasing the diversity of the shapes, materials, and composition
of our scenes could help mitigate this.

6 CONCLUSION AND FUTURE WORK
We have presented a novel approach to relighting a scene from a
sparse set of input images. We are able to accomplish this by training
a CNN to take 5 images of a scene under single directional lights
and render the scene under a novel directional light (in the upper
hemisphere). Moreover, we present a scheme to learn the optimal
directions for these sparse samples in conjunction with the relight-
ing function by jointly training a combined sampling-relighting
network. Extensive evaluations and comparisons to previous state-
of-the-art image-based relighting approaches show that we are able
to achieve the same (if not better) performance as them, except with
an order of magnitude fewer input samples.

This paper suggests a number of interesting directions for future
work. At a high-level, most previous scene appearance analysis
has relied on simple linear analysis tools. On the other hand, deep
networks have been extremely successful at learning good repre-
sentations for images; can we use them similarly to learn represen-
tations for scene appearance? How can we use such representations
to reduce the memory and time to relight (or render) a scene? In
this work, we learn the optimal set of directional lights; how would
this change if we also allowed non-directional, general illumina-
tion? While we have avoided explicit scene reconstruction in this
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Fig. 17. Real scenes (top 3 captured by us, bottom 2 from [Einarsson et al. 2006]) rendered with environment map lighting. These scenes contain objects with
complex reflectances, intricate geometries and span a wide range of scene size and layout. Yet, our method produces accurate relighting results for a single
directional light (second column and third column; output direction marked in yellow) and under environment lighting (fourth to sixth columns).

work, the results from training Relight-Net B (Fig. 10) indicate that
a network could learn to decompose scene factors from input sam-
ples. Combining this with learning the lighting that gives the best
reconstruction could be another interesting extension.
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