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Abstract

Most current single image camera calibration methods
rely on specific image features or user input, and cannot be
applied to natural images captured in uncontrolled settings.
We propose directly inferring camera calibration parame-
ters from a single image using a deep convolutional neural
network. This network is trained using automatically gen-
erated samples from a large-scale panorama dataset, and
considerably outperforms other methods, including recent
deep learning-based approaches, in terms of standard L2
error. However, we argue that in many cases it is more im-
portant to consider how humans perceive errors in camera
estimation. To this end, we conduct a large-scale human
perception study where we ask users to judge the realism of
3D objects composited with and without ground truth cam-
era calibration. Based on this study, we develop a new per-
ceptual measure for camera calibration, and demonstrate
that our deep calibration network outperforms other meth-
ods on this measure. Finally, we demonstrate the use of our
calibration network for a number of applications including
virtual object insertion, image retrieval and compositing.

1. Introduction

The first step for many vision and graphics tasks—
ranging from 3D scene reconstruction to image metrology
to photographic editing—is to geometrically calibrate the
camera that captured the image [13]. In this work, we are
specifically interested in calibrating a camera from a sin-
gle image of a natural scene, thereby precluding the use of
multiple views of the scene or calibration targets. There is
a extensive body of work even in this challenging setting;
however, most approaches rely on detecting specific image
features like vanishing lines [26], coplanar circles [3] and
repeated texture patterns [32, 6, 29], making them inappli-
cable to images without these features.

Inspired by the success of deep learning for related
scene reconstruction tasks [4, 1], we propose training a
deep convolutional network to directly estimate camera

1 Research partly done when Y. Hold-Geoffroy was an intern at Adobe Research.

parameters—more specifically the focal length, pitch and
roll–from a single image. This is similar to recent work on
CNN-based focal length [39] and horizon estimation [41].
We significantly improve on their results by jointly esti-
mating all the parameters and by training on sample im-
ages automatically extracted from a large-scale panorama
dataset [42]. We also analyze the features learned by
the network to understand how it differs from pre-defined
feature-based calibration.

While our calibration network produces state-of-the-art
results, there are a number of cases where it fails. For im-
ages with no clear geometric or semantic cues, there is am-
biguous evidence for what the “right” camera calibration
parameters should be. In many situations, recovering the
exact camera calibration may not even be required; for ex-
ample, humans are known to tolerate strong deviations from
realism in painting [2] and digital composites [9]. This lead
us to ask the question: how do humans perceive inaccura-
cies in geometric camera calibration? To answer this, we
conducted a large-scale user study to test the human per-
ception of errors in camera calibration. We composited vir-
tual objects into images using both ground truth calibration
parameters as well as randomly perturbed parameters, and
asked users to evaluate which image in each pair looked
“real” to them. The results of this user study are described
in sec. 6. To our knowledge, this is the first large-scale user
study to systematically evaluate human perception of cam-
era perspective. We use this data to design a new percep-
tual measure for calibration errors that we believe can prove
to be important as we evaluate how precise our algorithms
need to be for applications like augmented reality and 3D
object composition.

While our calibration network was trained to minimize
an entropy-based loss, we show that it also outperforms pre-
vious methods on our perceptual measure. In addition, we
also demonstrate the use of our network for a wide range
of applications, including 3D object insertion, calibration-
based image retrieval and compositing.

2. Related Work
Geometric camera calibration is a widely studied topic

that has a significant impact on a variety of applications in-
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Figure 1. Example results of horizon line estimation on the SUN360 test set. Note how Upright performs well when sharp human-made
objects are present in the scene, whereas deep learned methods are more robust to organic scenes. The last column (b) contains failure cases
where either the environment is not well represented in the training set (e.g. auditorium or acoustic panels) or visual cues for vanishing
lines are scarce, leading to horizon estimations where humans can potentially be less sensitive to errors. More examples available in the
supplementary material.

cluding metrology [5], 3D inference [6, 10] and augmented
reality, both indoor [14, 19] and outdoor [16]. As such,
many techniques have been developed to perform precise
geometric calibration using a calibration target inserted in
the image [35, 43, 15, 3]. For after-the-fact calibration, most
work on camera calibration aims to detect specific geomet-
ric objects in the image typically present in human-made
environments [30, 27]. Similarly, PoseNet [21] performs
camera relocalization by jointly learning location and ori-
entation. Methods for straightening photographs like Up-
right [26] recover calibration by finding vanishing points.
Other work has proposed to take advantage of lighting cues
for camera calibration [24, 40], circumventing the need to
detect vanishing lines. However, these techniques often fail
on complex scenes where semantic reasoning is required
to discard misleading textures and visual cues. To solve
the need for high-level reasoning, deep convolutional neural
networks were recently used to estimate field of view [39]
and horizon lines [41], bringing camera calibration on sin-
gle images to a wider variety of scenes.

Understanding the limits of the human visual system has
also received significant attention, with studies quantifying
color sensitivity [8], how reliably we can detect photo ma-
nipulations artifacts [9] and how people perceive distortion
in street-level image-based rendering [36]. More recently,
perceptual studies were performed to assess human appre-
ciation on tasks like super-resolution [25], image caption
generation [37] and video temporal alignment [28].

In this work, we go one step further by proposing a CNN-
based method estimating jointly field of view and the hori-
zon line and understanding human sensitivity to calibration
errors and comparing the features sought by our method to
traditional vanishing-lines-based methods.

3. Geometric camera model

We first present the geometric camera model used in this
paper. Under the pinhole camera model, the pixel coordi-
nates pim of a 3D point pw is given by

pim = [λu λv λ]T = K [R|t] [pw|1]T (1)
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in homogeneous coordinates, where K is the camera pro-
jection matrix (camera intrinsics), R and t are the camera
rotation and translation in the world reference frame (cam-
era extrinsics). Simplifying the model further to square pix-
els, no skew, and image center at the principal point, the
projection matrix K is given by K = diag([fpx fpx 1]),
where fpx is the focal length in pixels.

Since the camera parameters are to be estimated from a
single image, we first express them as a function of image
features. Let us first consider the focal length fpx. Since
it has no direct interpretation in the image, we instead esti-
mate the vertical field of view hθ, a more intuitive measure:

hθ = 2arctan (h/2fpx) , (2)

where h is the image height.
We next consider the rotation matrix R, which can be

parameterized by roll ψ, pitch θ, and yaw ϕ angles. There
exists no natural reference frame to estimate ϕ (left vs right)
from an arbitrary image. Therefore, we constrain the ro-
tation to only pitch and roll components, simplifying the
extrinsic rotation matrix to R = Rz(ψ)Rx(θ). We can
use the horizon line as an intuitive representation for these
angles. We define the horizon line midpoint bp as the y-
coordinate of its intersection with the vertical axis in the
image and roll ψ with respect to horizontal.

The midpoint bp can be derived from θ and fpx as

bp = 2fpx tan θ . (3)

In this image units representation, the top and bottom of the
image have coordinates 1 and −1 respectively.

Throughout our work, camera calibration refers to the
vertical field of view hθ, pitch bp and roll ψ from this sim-
plified geometric camera model.

4. Image calibration network
In this section, we present our CNN architecture for sin-

gle image calibration and compare it to the state-of-the-art
estimation method. To train this model, we need a large
number of images and their corresponding camera param-
eters. However, existing datasets either provides relatively
accurate field of view [38] or horizon lines [41], but not both
simultaneously. In the following, we discuss how we gen-
erate our camera calibration dataset, how the CNN model
was trained and what are the probable cues it looks for to
perform camera calibration.

4.1. Dataset

Our goal is to train a deep network to estimate the
camera roll, pitch, and field of view from a single image.
To obtain images and their ground truth camera parame-
ters, we take inspiration from [41, 17] and leverage the
SUN360 database [42], which contains a large number of
360◦ panoramas. We extract 7 rectified images from each

Parameter Distribution Values

Focal length (mm) Lognormal µ = 14, σ = 17
Horizon (pixels) Normal µ = 0.046, σ = 0.3
Roll (◦) Cauchy x0 = 0, γ ∈ {0.001, 0.1}
Aspect ratio Varying {1:1, 5:4, 4:3, 3:2, 16:9}

Table 1. Sampling of camera parameters used to generate the
dataset for the human sensitivity study.

panorama using a standard pinhole camera model of ran-
dom parameters. To obtain reasonable camera parameters,
the sampling strategies indicated in table 1 were employed.
Note that for the camera roll, two different Cauchy distri-
butions are sampled with 0.33 and 0.66 probability respec-
tively. This was done to model the fact that many photos
typically have a roll close to 0. The aspect ratios were cho-
sen by sampling Flickr and ImageNet images. Note that a
larger probability (0.66) was given to the 4:3 aspect ratio as
it is the most common. The other aspect ratios are given
a probability of 0.11. We resize the extracted images to
224 × 224 to fit the neural network input size. This results
in a dataset of 399,728 pairs of photos and their correspond-
ing camera calibration which we split into a training set of
389,760 pairs, a validation set of 9,078 pairs and a test set
of 890 pairs. Special care was taken to ensure no panorama
used in the training set was present in validation or test set
through other cropped photos.

As in [41], we use the slope/offset (ψ, ρ) representation,
where the horizon line is parameterized by the roll ψ and its
perpendicular distance from the center of the image ρ.

4.2. Architecture

We adopt a DenseNet [18] model pretrained on Ima-
geNet [31] on which we replace the last layer with three
separate heads: one for estimating the horizon angle ψ, a
second one to estimate the horizon’s distance to the center
of the image ρ and a third one to estimate the vertical field
of view of the image hθ. All output layers use the softmax
activation function to output a probability distribution by
discretizing their respective parameter into 256 bins. This
type of representation was also used in [41]. We adopt a
range of [−π/2, π/2] for slope and [−1.6, 1.6] for offset. For
both parameters, we use smaller bins around 0 for finer es-
timations around those values. Bin width follow an inverse
normal distribution with µ = 0, σ = {0.5, 1} for slope
and offset, respectively. We sum the Kullback-Leibler di-
vergence of the three heads and use it as loss to train the
model, which we minimize using stochastic gradient de-
scent with the Adam optimizer [22] with an initial learning
rate of η = 0.001 and a learning rate decay of α = 0.0002.
Training is performed on mini-batches of 42 images. Con-
vergence is observed through early stopping typically after
9-10 epochs.
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Figure 2. Pitch (left) and roll (right) estimation performance on
the HLW dataset (top) and our SUN360 test set (bottom). Nega-
tive pitch denotes a camera pointing up. Results are displayed as
”box-percentile plots” [7], where the column envelope represents
the percentile and the horizontal bars represents the first quartile,
median and third quartile. Estimation errors (y-axis) are grouped
into bins according to the parameter value (x-axis).
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Figure 3. Vertical field of view estimation performance on our
SUN360 test set displayed as a ”box-percentile plot” (left) and a
cumulative distribution function (right). See fig. 2 for an explana-
tion of the box-percentile plot.

5. Evaluation

We report quantitative horizon line estimation perfor-
mance of Upright [26], DEEPHORIZON [41] (as trained
by the authors) and our method (trained on SUN360) on
two different datasets, the Horizon Lines in the Wild (HLW)
dataset [41] and our SUN360 test set in fig. 2. We observe
that aside from large roll errors on HLW, our method out-
performs the state-of-the-art in most cases. Upright fails
to converge on many cases since multiple images in our
SUN360 test set do not contain edges on which the tech-
nique relies on. Qualitative results are shown in fig. 1.

Fig. 3 shows quantitative field of view estimation accu-
racy on our SUN360 test set. Our method significantly out-
performs Upright [26] across the entire range of parameters.

Feature analysis We use guided backpropagation [34] to
understand the image features our CNN-based method fo-
cuses on to perform its estimation. We use the smooth-
grad [33] version of guided backpropagation (SGB) to ob-

tain a more stable analysis. Qualitative results are shown
in fig. 4. Note how edges representing vanishing lines are
highlighted by SGB in accordance to the features used by
geometry-based approaches such as Upright. Sharp edges
that are not useful for horizon estimation, such as clouds
or organic objects, are not taken into account. As such,
we believe this focus map could help geometric-based ap-
proaches select the appropriate edges for geometric calibra-
tion estimation. Furthermore, when no clear vanishing line
is detected in the image, the CNN model tends to focus on
boundaries between sky and land, as the horizon typically
lies on or below this boundary.

6. Human perception of calibration
Given the fundamental role it plays in the context of ge-

ometric scene reconstruction, single image camera calibra-
tion has been studied extensively. Most of this work at-
tempts to exactly recover the camera calibration. However,
it has been observed that the human visual system is forgiv-
ing of inconsistencies in perspective for single image ap-
plications like virtual object compositing [20]. In this work,
we aim to understand what the bounds of these human toler-
ances are. Knowing these can allow us to design a) camera
calibration methods that match human performance, and b)
geometric editing applications like object compositing that
can “fool” human observers.

In particular, we aim to understand the sensitivity of hu-
mans to camera calibration errors in the context of virtual
object insertion by running a large-scale user study on Ama-
zon Mechanical Turk. In the following, we discuss how we
generated the dataset necessary for the study, how the user
study was performed, and provide a detailed analysis of the
obtained results.

6.1. Dataset generation

To understand human perception of geometric camera
calibration errors, we show pairs of images containing a
virtual object to multiple users, one aligned according to
the ground truth camera calibration and the second with
some parameter(s) distorted to some extent. To generate
this dataset, we use the same process as described in 4.1 to
obtain images with their ground truth calibration. We ran-
domly selected 530 panoramas (79 indoor and 451 outdoor)
from this dataset, resulting in 10,638 images with realistic
camera parameters.

An insertion point on the ground was manually selected
for each image. The Cycles renderer was used to realisti-
cally insert virtual objects at that point in the images. The
ground plane was set at y = 0 using the shadow catcher
feature. The virtual camera was placed at a height of 1.6m.
Automatic lighting estimates were obtained by leveraging
recent work in single image lighting estimation for the out-
door [17] and indoor [11] cases.
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ground truth our estimation

Figure 4. Analysis of the neural network focus. The result of smoothed guided backpropagation is displayed as a jet overlay. When
present, edges corresponding to important vanishing lines are highlighted while other edges are discarded. When no clear horizontal
vanishing lines are detected, the neural network seems to look for the boundaries of either sky or land textures while dismissing the clouds
or objects like trees, probably hinting bounds on horizon location in the image. More examples available in the supplementary material.

Two renders are generated for each image. The first one
is obtained by setting the parameters of the virtual (render-
ing) camera to the ground truth parameters of the back-
ground image. The second render is obtained by distort-
ing the virtual camera parameters, yielding a virtual ob-
ject that does not have the same camera parameters as the
background. For this second render, either pitch, roll, field
of view or a combination of these parameters were modi-
fied. The parameters were altered by randomly adding or
subtracting values sampled from a uniform distribution in
[1, 30]

◦ for pitch, [0.5, 20]◦ for roll and [5, 55]
◦ for field of

view. In the distorted renders, the object was moved and
scaled in order to appear at the same location and have the
same size in the image as the ground truth render. This step
is needed as apparent size is a function of field of view. The
virtual objects were laid vertically on the ground plane and
were randomly rotated about their vertical axis.

To limit biases caused by the virtual object inserted, we
inserted 8 different virtual objects on each image. These
objects include simple geometric primitives (sphere, cone),
real objects with clear vertical directions (toy rocket, metal
barrel, the Eiffel tower) and objects with a somewhat or-
ganic shape (the Stanford bunny and a horse statue). Several
examples of images generated using this process are shown
in fig. 6 and in the supplementary material.

6.2. Perceptual evaluation

We use Mechanical Turk to perform a perceptual study
where workers were shown two renders of the same object
on the same background image: one with ground truth pa-
rameters, another one with distorted parameters (see 6.1).
Workers were asked to select the image where the object
orientation looks better. To help them focus on camera
parameters, they were specifically instructed to ignore the

color, texture, shadows or lighting on or around the object.
This form of a forced choice A/B test allows us to isolate the
effect of the camera calibration and discard any potential is-
sues caused by the way we create these composites (e.g.,
non-realistic objects, inaccurate lighting estimation, etc.)

In total, 376 workers provided 145,720 submissions,
from which 124,740 were accepted, leading to 11 differ-
ent users annotating each image on average. 4319 of those
submissions had a single distorted parameter, while the re-
maining 5947 had two or more distorted parameters. To
ensure quality work, sentinels [12] were inserted through-
out the experiment. These sentinels are manually validated
images with obviously distorted calibration. Workers were
presented batches of 20 images at a time which contained
2 sentinels. 9 workers were blocked from repeatedly se-
lecting the sentinels. An additional 520 annotations were
rejected for inattentive workers failing some sentinels over
a small time lapse. The median time spent on a single pair
of images was 4 seconds.

6.3. Study results

In this section, we report on the analysis performed on
the user study results. We analyze the impact of several as-
pects: the virtual objects rendered in the images, the back-
ground images, the ground truth camera parameters, and the
joint space of error in parameters with themselves.

Virtual object We found no statistical difference in the
results obtained across the virtual objects, except for two:
the sphere and the Stanford bunny. For these two objects,
the participants in the study were unable to identify the
ground truth image except for significant field of view vari-
ations (at least 30◦). The sphere being rotationally symmet-
ric, it is unsurprising that it does not serve as a good barom-
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Figure 5. Human sensitivity to errors in (a) pitch, (b) roll and (c)
field of view. We use the percentage of users choosing the im-
age with an object inserted with the ground truth calibration as a
measure of human sensitivity. 50% represents confusion, meaning
users are as likely to choose an insertion with a distorted calibra-
tion than the ground truth, and 100% means that all humans could
detect the ground truth image. The line represents the median of
the percentage of people who pick the ground truth human for each
image. The light shaded regions shows the first and third quartile.

eter for determining errors in object insertion. We theorize
that the bunny, with its round shape, shares similarities to
the sphere in that respect.

We also found no statistical difference in the results
when analyzing the impact of the object size, computed as
the relative height of the object with respect to the image.
Participants showed similar accuracy regardless of object
size (ranging from 10% to 85% image height in our dataset).

Background image We manually labeled the images into
either outdoor or indoors, and found no statistical difference
between the two subsets. We also tried more finely-grained
labels (e.g. built vs natural) but did not find any interest-
ing trend there either. Finally, we analyzed the impact of
the mean image brightness, hypothesizing that a mismatch
in camera parameters may be more easily observable in
brightly-lit images. We found no statistical differences be-
tween images of different mean intensities.

Error in camera parameters We evaluate the sensitivity
of humans to errors in camera parameters as a function of
the errors in each parameter independently and illustrate the
results in fig. 5. To generate this curve, we compute the per-
centage of times the study participants preferred the ground
truth over the distorted image, and compute the median and
percentiles across all images (and different virtual objects)
that share the same amount of distortion. The higher the
percentage in the y axis, the more humans are prone to de-
tect errors in this scenario. Conversely, 50% indicates per-
fect confusion: participants are unable to distinguish be-
tween the ground truth and the distorted version.

First, we note that when the error in camera parameters
is close to 0, confusion nears 50%, which is expected. What
is interesting is how quickly sensitivity rises when increas-
ing the error. We note a large tolerance to negative errors
in field of view (fig. 5-c). Large positive errors (right side
of the plot) translate to rendering an object with a field of
view that is larger than that of the background. This results

in increased perspective effects on the object, which tend to
be visible. On the other hand, negative errors indicate that
the perspective effect is not as pronounced on the object as
it should be with respect to the background image. In this
scenario, participants seemed to have been unable to differ-
entiate between the ground truth and the distorted object.
For field of view, a range of 15◦ over and up to 50◦ under
the ground truth value went unnoticed to the users.

Participants could tolerate an error in pitch up to 0.2 in
rescaled image units (see sec. 3), but beyond this threshold,
users started to distinguish the distortions (fig. 5-a). The
high sensitivity to roll errors is most prominent (fig. 5-b),
where errors of 12◦ and more are almost systematically de-
tected and only a small range of approximately ±2.5◦ roll
error go unnoticed.

Joint space of error in camera parameters and absolute
parameter value Evaluating sensitivity to errors in each
parameter is interesting, but does not tell the whole story.
Are there regions in parameter space where combinations
of errors are more noticeable? To evaluate this, we plot the
2D space of errors and absolute parameter value in fig. 6.

First, our results suggest that human sensitivity to pitch
error does not correlate strongly with horizon position in the
image. Similarly, sensitivity to errors in field of view seems
to be constant across all fields of view used in the study.
However, the camera roll appears to have an influence on
our perception of roll error: images with high roll (in either
direction) allow more room for roll estimation errors.

Please see the supplementary material for additional
analysis, including joint modeling of distortions on multi-
ple parameters.

6.4. CNN evaluation on human perception

We further evaluate the method we proposed in sec. 4
against other learning and non-learning-based methods in
terms of the human sensitivity. To obtain a human sensitiv-
ity function, we fit a kNN with k=15 to the human sensitiv-
ity study results of this section. Specifically, we use error
and parameter values on pitch, roll and field of view, yield-
ing a 6 degrees of freedom function. We use the Euclidean
distance for neighbor selection and scaled each value ac-
cording to observed tolerance in the user study: 1:0.2 for
pitch in image units, 1:12 for roll in angle and 1:15 for field
of view in angle. We convert the reported percentage of
human choosing the ground truth values to human sensitiv-
ity by mapping the 50-100% range (confusion-detection) to
0-100%. Performance on this human sensitivity function
on our SUN360 test set for horizon estimation is shown in
fig. 8. Our method has the third quartile of its predictions
under 20% of human sensitivity across the parameter range,
systematically lower than every other method. Even though
our method was not directly trained using a perceptual loss,
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Figure 6. Human sensitivity to errors in pitch (left), roll (center) and field of view (right) as a function of individual parameter values, along
with examples of image pairs shown to the users. We bin the percentage of people choosing the ground truth per image of the user study.
The colors in the plot represents the median over all values in each bin. Note the strong relation between the roll value and its human
sensitivity to error. Some combinations of parameters and errors makes it impossible to perform insertion leading to missing values in the
figure (e.g., the ground is not visible anymore in the image (bottom left in pitch) or the resulting field of view would be negative (bottom
left in field of view)). See the supplementary material for more analysis, including joint modeling of distortions on multiple parameters.

Query NN1 NN2 NN3 NN4

Figure 7. Examples of image retrieval by horizon location on Places2. The horizon line is estimated using our method from the query
image, and used to find closest matches in a 10k random subset from Places2. The top-4 matches are shown on the right.
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Figure 8. Performance of our method, Upright and DEEPHORI-
ZON on (a) pitch and (b) roll using our human sensitivity mea-
sure. Reported sensitivity takes into account estimation errors on
all three parameters at the same time.

we believe this improvement is due to the entropy-based
loss being stricter than the perceptual loss (i.e., it penalizes
all errors even when they don’t affect the realism).

To further assess the perceived accuracy of our method,
we ran another user study that showed participants object
insertion results using 3 calibration methods simultaneously
and asked them to pick the most realistic one. Table 2 shows
the scores from 2208 votes (32 users × 69 images).

ours [41] [26]

46% 31% 23%

Table 2. User study comparing human preference on virtual object
insertion. Percentage represents each method’s share of votes.
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Figure 9. The water tower from fig. 7 pasted onto an image with
an automatically detected similar horizon line. Note how the per-
spective looks right without modification.

7. Applications

We now demonstrate three different uses for camera pa-
rameter estimation from a single image: image retrieval,
geometrically-consistent object transfer across images, and
virtual 3D object insertion.

Image retrieval Our technique can be used to retrieve im-
ages in large databases based on their camera geometric
properties like viewpoint and field of view. To demonstrate
this, we estimated the camera parameters using our tech-
nique on a subset of 10,000 images randomly selected from
the Places2 dataset [44], computed the intersection of the
horizon line with the left and right image boundaries, and
ordered images in the dataset based on the L2 distance of
these points to ones in the query image. Fig. 7 presents the
4 closest matches for three query images.

Geometrically-consistent object transfer Transferring
objects from one image to another requires matching the
camera parameters [23]. While previous techniques re-
quired the use of objects of known height in the image in
order to infer camera parameters [23], our approach can ob-
tain them from the image itself, and as such can be used
to realistically transfer objects from one image to another.
One such example is shown in fig. 9.

Virtual object insertion Our approach also enables the
realistic insertion of 3D objects in 2D images. As discussed
in sec. 6, camera parameters are needed to plausibly align
the virtual object with the background image. Given our
automatic estimates, the user only needs to select an inser-
tion point in the image and to specify the virtual camera
height. Assuming the local scene around the object is a flat
plane aligned with the horizon, we can automatically insert
a virtual object and demonstrate several such examples in
fig. 10. For these results, the camera height was set to 1.6m
and the lighting was automatically estimated by [17, 11].

Figure 10. Examples of virtual object insertions using the camera
calibration estimated by our technique. More results available in
the supplementary material.

8. Discussion
In this paper, we present what we believe is the first anal-

ysis of human sensitivity on estimation errors for camera
pitch, roll and field of view in the context of virtual ob-
ject insertion. To this end, we performed a large-scale user
study on Mechanical Turk, which evaluates how reliably
participants were able to distinguish between two images
with virtual objects composited with ground truth and dis-
torted camera parameters. Our study reveals that humans
are not always sensitive to large errors, especially when
the roll is pronounced, or when the field of view is un-
derestimated. We also present a CNN-based single image
calibration estimation method which yields state-of-the-art
performance, enabling applications such as image retrieval,
geometrically-consistent 2D object transfer, and virtual 3D
object insertion. Upon investigation, it was revealed that
the learned model is looking for semantically meaningful
vanishing lines, making parallels with geometrically-based
auto-calibration techniques. Finally, we leverage the user
study results to define a distance function based on human
perception, which is used to compare our CNN to previous
approaches.

Despite this progress, our approach still suffers from a
few limitations. While the trained CNN works very robustly
in a large number of realistic scenarios, extreme pitch angles
(e.g. looking straight down) cannot be represented by the
current horizon line parameterization. Furthermore, the per-
ceptual distance function defined in sec. 6.4 could be used
as a loss function to train the neural network, putting em-
phasis on training images where humans are more sensitive
to errors. This perceptual loss could also better model the
human perception by using photorealistic objects through-
out the study. Lastly, the robustness of our model could be
coupled with the accuracy of a geometric-based method by
taking advantage of the detected semantically meaningful
vanishing lines.
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