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Abstract. Reliable markerless motion tracking of multiple people par-
ticipating in complex group activity from multiple handheld cameras is
challenging due to frequent occlusions, strong viewpoint and appearance
variations, and asynchronous video streams. The key to solving this prob-
lem is to reliably associate the same person across distant viewpoint and
temporal instances. In this work, we combine motion tracking, mutual
exclusion constraints, and multiview geometry in a multitask learning
framework to automatically adapt a generic person appearance descrip-
tor to the domain videos. Tracking is formulated as a spatiotemporally
constrained clustering using the adapted person descriptor. Physical hu-
man constraints are exploited to reconstruct accurate and consistent 3D
skeletons for every person across the entire sequence. We show significant
improvement in association accuracy (up to 18%) in events with up to
60 people and 3D human skeleton reconstruction (5 to 10 times) over the
baseline for events captured “in the wild”.
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1 Introduction

With the rapid proliferation of consumer cameras, events are increasingly be-
ing recorded from multiple views, such as surprise parties, group games with
headmounted “action cams”, and sports events. The challenges in tracking and
reconstructing such events include: (a) large scale variation (close-up and dis-
tant shots), (b) people going in and out of the fields of view many times, (c)
strong view point variation, frequent occlusions and complex actions, (d) cloth-
ing with virtually no features or clothing that all look alike (school uniforms
or sports gear), and (e) lack of calibration and synchronization between cam-
eras. As a result, tracking methods (both single [1–3] and multi-view [4–6]) that
rely on motion continuity produces short tracklets. And tracking-by-association
methods relying on pretrained descriptors [7, 8] fail to bridge the domain dif-
ferences between training data captured in (semi-)controlled environments and
event videos captured in open settings.

Project webpage: http://www.cs.cmu.edu/∼ILIM/projects/IM/Association4Tracking/
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(a) Chasing (b) Tagging (c) Halloween

Fig. 1: Our testing scenes. Chasing has 14 people, 6 of them with camouflage
and 3 others with dark clothing, and cannot be distinguished without strong
attention to detail. Tagging has 14 people with feature-less clothing making
feature tracking hard. Halloween is from an actual suprise birthday during the
Halloween party with 60 people and suffers from significant motion blur. There
are no constraints on the scene and camera behavior for any of these sequences.

We present a novel approach that integrates tracking-by-continuity and tracking-
by-association to overcome both their limitations. We show that even a state-
of-art pretrained person appearance descriptor is not sufficient to discriminate
different people over long durations and across multiple views. We bridge the
domain gap by refining the pretrained descriptor to the event videos of inter-
est without any manual interventions (like labeling). This self-supervision is
achieved by exploiting three specific sources of information in the target domain:
(a) short tracklets from tracking-by-continuity methods, (b) multi-view geome-
try constraints, and (c) mutual exclusion constraints (one person cannot be at
two locations at the same time). These constraints allow us to define contrastive
and triplet losses [9, 10] on triplets of people images – two of the same person
and one of a different one. Even using the most conservative definition of the
constraint satisfaction (tiny tracklets, strict thresholds on distance to epipolar
lines) allows us to generate millions of triplets for domain adaptation.

While the above domain adaptation stage improves the descriptor discrim-
inability of people with similar appearance, it could also lead to strong semantic
bias for people rarely seen in the videos. We address this problem using a multi-
task learning objective and jointly optimize the descriptor discrimination on the
large labeled corpus of multiple publicly available human re-Identification (reID)
datasets and the unlabeled domain videos. A strong person descriptor enables
the use of clustering for people tracking. We adopt the clustering framework of
Shah and Koltun [11] and enforce soft spatiotemporal constrains from our mined
triplets during the construction of the clustering connectivity graph. Since the
association is solved globally, there is no tracking drift.

We validate our association accuracy on three highly challenging sequences
of complex and highly dynamic group activity: Chasing, Tagging, and Halloween
party, captured by at least 14 handheld smartphone and head mounted cameras
(see Fig. 1 and Tab. 2 for the scene statistics). Our method shows significant
accuracy improvement over the state-of-art pretrained human reID model (18%,
9%, amd 9%, respectively).

These numerical improvements do not tell the full story. To demonstrate the
impact of the improvement, we use our association to drive a complete pipeline
for 3D human tracking (that exploits physical constraints on human limb lengths
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and symmetry) to estimate spatially stable and temporally coherent 3D skeleton
for each tracked person. Compared to the baseline, our method shows signifi-
cant improvement (5-10X) in 3D skeleton reconstruction, stability, minimizing
tracking noise. We believe, for the first time, stable and long duration 3D human
tracking has been demonstrated in actual chaotic live group events captured in
the wild. Please see supplementary material for reconstructions.

Contributions: (1) We present an automatic domain adaptation of per-
son appearance descriptor using monocular motion tracking, mutual exclusive
constraints, and multiview geometry in a multitask learning framework without
any manual annotations. (2) We show that discriminative appearance descrip-
tor enables reliable and accurate tracking via simple clustering. (3) We present
a pipeline for accurate and consistent 3D skeleton tracking of multiple people
participating in a complex group activity from mobile cameras “in the wild”.

2 Related Work

Our work is related to the themes of people reID and multiview motion tracking.
People reID focuses on learning appearance descriptors that match people across
viewpoints and time. Recent advances in people reID can be attributed to large
and high-quality datasets [12–14], and strong end-to-end descriptor learning.
Common approaches include verification models [12, 15, 16], classification mod-
els [17, 18], or their combinations [19, 20]. Some recent works also consider body
part information [21, 22] for fine-grained descriptor learning. We build on these
works but show how a generic person descriptor is insufficient for reliable human
association on the multiview videos captured in the wild. Instead, we propose
an automatic mechanism to adapt the person descriptor to the captured scene
without any manual annotations. Thus, our association model is event (scene)
specific rather than generic human reID models.

People tracking approaches formulate person association as a global graph
optimization problem by exploiting the continuity of object motion; examples
include [1, 23, 24] for single view tracking, and [4, 25, 26] for multiview tracking
from surveillance cameras. These approaches use relatively simple appearance
cues such as the histogram of color, optical flow, or just the overlapping bound-
ing box area [2, 3, 23, 27–30] for monocular settings or 3D occupancy map from
multiview systems [5, 31, 32]. These methods mainly focus on reliable short-term
tracklets as the targets permanently disappear after a short time. Our algorithm
takes those tracklets as inputs and produces their associations. Additionally,
whereas existing multiview tracking algorithms require calibrated and mostly
stationary cameras [5, 31–33], our method can handle uncalibrated moving cam-
eras and can temporally align multiple videos automatically during the data
generation process for domain adaption.

There are also recent efforts to combine the benefits of global optimization
for people association with discriminative appearance descriptors with clear im-
provements over isolated approaches [34–38]. Notably, Yu et al. [8] present an
identity-aware multiview tracking algorithm for a known number of people that
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exploits the sparsely available face recognition, mutual exclusion constraints,
and the locality information on a 3D ground plane obtained from fixed cam-
eras to solve a L0 optimization problem. We address a similar problem but in
unconstrained settings with handheld cameras and unknown number of people.
Our insight is to learn strong scene-aware person descriptor rather than solving
complex optimization problems.

Our application to 3D markerless motion tracking has been studied in both
laboratory setups [39–42] and more general settings with less restrictive model
assumptions [43], owing to advances in CNN-based body pose detectors [44–46].
Recent methods with sophisticated visibility modeling [47] or learning based
regression [48, 49] enabling motion tracking with few or monocular camera while
trading off accuracy are actively explored. However, existing methods for motion
tracking showcase the results on activity involving 1 or 2 people in restricted
setups. In contrast, we target 3D motion tracking of complex group activities of
many people (up to 60 people) in unconstrained settings.

3 Scene Aware Human Appearance Descriptor

Our goal is to learn a robust appearance descriptor extractor ux = f(x) of a
person image x that is similar for images of the same person and dissimilar for
different people regardless of the viewing direction, pose deformation, and other
factors (like illumination) for our domain videos. We start with an extractor
f(x), initially trained on a large labeled corpus of multiple publicly available
people ReID datasets, and finetune it using the Siamese triplet loss on triplets
of images automatically mined from the domain videos. While this finetuning
stage improves the descriptor discriminability of people with similar appearance,
it could also lead to strong semantic bias for people rarely seen in the videos. We
address this problem using a multitask learning objective and jointly optimize the
descriptor discriminability on the labeled corpus labeled human ReID datasets
and the unlabeled domain videos.

3.1 Person Appearance Descriptor Adaptation

Due to possible discrepancies between the appearances of the training sets and
our domain application videos, we finetune the CNN model on each of our test
video sequences using the contrastive and triplet loss [9, 10]. The input to our
process are triplets of 2 images of the same person and 1 image of a different
person. We optimize the CNN such that the distance between query and anchor
is small and the distance between query and the negative example is large. Our
loss function is defined as:

LS(ui, u
+
i , u

−
i ) = ‖ui − u+

i ‖
2
2 + max

(
0, ‖ui − u−i ‖

2
2 −m

)
+ max

(
0, ‖u+

i − u
−
i ‖

2
2 −m

)
,

LT (ui, u
+
i , u

−
i ) = max

(
0, ‖ui − u+

i ‖
2
2 − ‖ui − u−i ‖

2
2 +m

)
,

LST (ui, u
+
i , u

−
i ) = LS(ui, u

+
i , u

−
i ) + LT (ui, u

+
i , u

−
i ),



Automatic Adaptation of Person Association of Multiview Tracking 5

where, {ui, u+
i , u

−
i } is a triplet of two positive and a negative unit norm descrip-

tor, respectively, and m (set to 2 for all experiments) is the margin parameter
between two distances. Our total loss function for finetuning is defined as:

EST = min
f

Nd∑
i=1

LST (ui, u
+
i , u

−
i ),

where, Nd is the number of triplets in the domain videos. We optimize the model
using SGD. No hard-negative mining is used due to possibly erroneous labeling.

Automatic Triplet Generation

Single-view triplets: For every video, we first apply CPM [44] to detect all the
people and their corresponding anatomical keypoints. Given these detections,
we can easily generate negative pairs by exploiting mutual exclusive constraints,
i.e. the same person cannot appear twice in the same image. In addition, we
can create positive pairs by using short-term motion tracking. We create motion
tracklets by combining three trackers: bidirectional Lucas-Kanade tracking of
the keypoints, bidirectional Lucas Kanade tracking of the Difference of Gaussian
features found within the detected person bounding box, and person descriptor
matching between consecutive frames. The tracklet is split whenever any of the
trackers disagree. We also monitor the smoothness of the keypoints and split
the tracklet whenever the instantaneous 2D velocity is 3 times greater than its
current average value. More sophisticated approaches such as [23, 24] can also
be used for better tracklet generation. Images corresponding to the same motion
tracklet constitute positive pairs for our finetuning.

Multi-view triplets: We enrich the training samples to generate positive pairs
across views by using multiview geometry – pairs of detections corresponding to
a single person in 3D space should satisfy epipolar constraints. Since our videos
are captured in the wild, they are unlikely to be synchronized. Thus, we must first
estimate the temporal alignment between cameras to use multiview geometry
constraints. Assuming known camera framerate and start time from the video
metadata, which aligns the videos up to a few seconds, we linearly search for the
temporal offset with the highest number of inliers satisfying the fundamental
matrix. A bi-product of the temporal alignment process is the corresponding
tracklets across views, which form our positive pairs.

More specifically, let kni (t) = {knt,1i , ..., k
nt,18
i } be the set of anatomical key-

points of the people detection n at frame t of camera i, and Tl
i = {n0, .., nF }

be a tracklet l containing the images of the same person for F frames. Let
Mc = (Tl

i,T
k
j ) be the candidate tracklet pair c of the same person, computed

by examining the median of the cosine similarity score of between all pairs of
descriptors 2 within the tracklets, for camera pair (i, j) and Mi,j be all putative

2 At this stage, the descriptors are extracted using a pretrained CNN model. Please
refer to the supplementary material for more details about this model.
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matched tracklets for camera pair (i, j). We set the similarity threshold to 0.5
and add those candidate matches to the hypothesis pool until their ratio-test
threshold drops below 0.7. We use RANSAC with the point-to-line (epipolar
line) distance as the scoring criteria to try all possible time offsets within the
window of [−2W, 2W ] frames to detect the hypothesis with the highest number
of geometrically consistent matched tracklets:

I←RANSACMc∈Mi,j

W∑
w=−W

F∑
t=1

Ni(t)∑
n=1

n∈Tli(t)
m=Tkj (t+w)

(Tli,T
k
j )∈Mc

18∑
p=1

d(kn,pi , km,pj ,Fi,j(t)),

where, Ni(t) is the number of people detected in camera i at frame t, I is the
number of inliers, and d(x1, x2,Fi,j(t)) is the bidirectional point-to-line distance
characterized by the fundamental matrix Fi,j(t) between the camera pair. Fi,j(t)
can either be estimated by calibrating the cameras with respect to the scene
background or explicitly searched for using the body keypoints during the time
alignment process. We prune erroneous matches by enforcing cycle-consistency
within any triplet of cameras with overlapping field of view. We set W to twice
the camera framerate and use the video start time to limit the search.

3.2 Multitask Person Descriptor Learning

While finetuning the person appearance descriptor exclusively on the test domain
could potentially improve discrimination of similar looking people, using it alone
may result in semantic drift. The learned descriptor has a strong bias toward
frequently observed people, and the descriptor of different people who are rarely
observed together from a single camera cannot be forced to be different.

Thus, we jointly learn the person descriptor from both the large scale labeled
human identity training data and the scene specific videos. Since the model must
predict the identity of the person from the labeled dataset, it is expected to
output discriminative descriptors for rarely seen people in the domain videos.
On the other hand, since we finetune the model on the domain videos, it should
also discriminate people in those sequences better than training solely on other
datasets. Mathematically, our multitask loss function is defined as:

ED = min
f

(1− α)ESM + αEST ,

where α is the scalar balancing the contribution of two learning tasks. ESM is
the standard classification loss:

ESM = argmin
f

Ns∑
i

LSM
(
g(f(xi)), yi)

)
,

where, Ns is the number of training examples in the labeled corpus datasets, g
is a linear function mapping the person appearance descriptor, f(·), to a vector
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of the dimension of the number of people in the training corpus, and LSM is the
softmax loss penalizing wrong prediction of the people ID label. We set α equal
to 0.5 for all experiments.

4 Multiview Tracking via Constrained Clustering

Given the person descriptor, we group detections of the same person across
all space-time instances. We rely on the clustering framework of Shah and
Koltun [11] but explicitly enforce soft constraints from motion tracklets, mutual
exclusive constraints, and geometry matching to link detections. This clustering
is formulated as the optimization problem:

C = min
m

N∑
i=1

‖ui −mi‖22 + λ
∑

(p,q)∈Q

wp,qρ(‖mp −mq‖2),

where, N is the number of people detectors, Q is the set of edges in a graph
connecting data points ui, m = {m1, ..,mN} are the representative of the input
descriptors u, λ is a balancing scalar, and ρ is the German-McClure estimator.

wp,q =
∑N
i Ni

N
√
NpNq

, where Ni is the number of edges connecting xi in Q, bal-

ances the strength of the connection (p, q). Depending on the discrimination of
u, the correct number of cluster can be automatically determined during the
optimization process [11].

In our settings, we first compute the similarity between tracklet descriptors
by taking the median of all possible pairs within the two tracklets to construct
the mutual k-NN graph [50]. The number of nearest neighbors is chosen such
that the distance between different tracklets is 2 times larger than the median
of the tracklet self-similarity score. All detectors belonging to the same track-
let are connected with detectors of their k mutually nearest tracklets. We then
add/prune connections that satisfy/violate the multiview triplets mined in Sec-
tion 3.1. All positive pairs of the triplets are connected, and all negative pairs
are disconnected. Finally, we remove the connectivity for detections with no
overlapping camera viewing frustums.

5 Application: Human-aware 3D Tracking

To show the benefit of our scene aware descriptor, we build a pipeline for marker-
less motion tracking of complex group activity from handheld cameras. We first
cluster the descriptors from all camera to obtain person tracking information.
We then exploit human physical constraints on limb length and symmetry to
estimate spatially stable and temporally coherent 3D skeleton for each person.

For each person (cluster), we wish to estimate a temporally and physically
consistent human skeleton model for the entire sequence. This is achieved by
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minimizing an energy function that combines an image observation cost, motion
coherence, and a prior on human shape:

E(K,L) = EI(K) + EL(K,L) + ES(K) + EM (K), (1)

where, K is the 3D location of the anatomical keypoints over the entire sequence,
L is the set of mean limb length for each person. The image evidence cost EI
encourages the image reprojection of the set of keypoints 3D position to be
close to the detected 2D keypoints. The human constant limb length cost EL
minimizes the variations of the human limb length over the entire sequence. The
left-right symmetric cost ES penalizes large bone length differences between
the left and right side of the person. The motion coherency cost EM prefers
trajectory of constant velocity [51]. The formulation for each of these terms are
given in Table 1. We weight these costs equally.

EI(K)
∑C
c=1

∑F
t=1

∑N
n=1

∑18
p=1 ρ

(
V npc (t)

πc(K
np,t)−knpc (t)
σI

)
EL(K,L)

∑F
t=1

∑N
n=1

∑
q∈Q

(
L
nq−Lnqc (t)

σL

)2

ES(K)
∑F
t=1

∑N
n=1

∑
(l,r)∈S

(
Lnlc (t)−Lnrc (t)

σS

)2

EM (K)
∑N
n=1

∑18
p=1

∑F−1
i=1

(
Knp(i+1)−Knp(i
σ
p
M
∆(i+1,i)

)2

C: number of cameras
F : number of frames
N : number of tracked people
πc(K

p, t): projection matrix
V npc (t): visibility indicator
Lnq(t): 3D distance between two
points
Q: keypoint connectivity set
S: corresponding left and right
limb set
∆: absolute time differences
σI : variation in 2D detection
σL: variation in bone length
σpM : variation in 3D speed

Table 1: 3D human tracking cost functions.

We initialize K,L by per-frame RANSAC triangulation of the corresponding per-
son obtained from the clustering and minimize Equation 1 using Ceres solver [52].

6 Experimental Results

Scene Chasing [C] Tagging [T] Halloween [H]

# cameras 5 head-mounted + 12 hand-held 14 hand-held 14 hand-held

Video stats. 1920×1080, 60fps, 30s 1920×1080, 60fps, 60s 3840×2160, 30fps, 120s

# people 14 14 60

Tracklet noise 2% 11% 3%

Table 2: Statistics of the testing scenes. Tracklet noise is the percentage of track-
lets with at least two people grouped into a single track.

The proposed method is validated on the three sequences: Chasing [C], Tagging
[T], and Halloween [H]. In [T], the camera holders are mostly static and appear
in low resolution which does not provide enough appearance variation for strong
descriptor learning. It also has many noisy single-view tracklets with different
people grouped together due to the lack of texture on the clothing and frequent
inter-occlusion. There were no constraints on the camera motion or the scene
behavior for any sequence. Refer to Tab. 2 for the statistics of the scenes. We
manually annotate the people ID in all sequences for quantitative evaluations.

To perform 3D tracking, we calibrate the cameras using Colmap [53] for [C]
and [T]. Due to human motion which frequently occludes the background and
strong motion blur, we fail to estimate the camera pose at every frame for [H].
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6.1 Analysis of the Descriptor Adaptation

Initially, we pretrain the generic person descriptor on a large corpus that con-
sists of 15 publicly available reID datasets. The combined dataset provides strong
diversity in viewpoints, e.g., single camera tracking vs., multiview surveillance
system, appearances, e.g., campus, shopping mall, streets, or laboratory studio,
and image resolution. We augment the image with the heatmaps of the body
pose provided by CPM [44] to train a pose insensitive person descriptor extrac-
tor. This model produces state-of-art descriptor matching on multiple standard
benchmarks. Please refer to the supplementary material for details of this model.

Fig. 2 shows 10-NN cross-view matching of images of several people with
similar appearance or motion blur for all sequences and their cosine similarity
score using the pretrained model and our multitask descriptor learning. The pre-
trained model retrieves multiple incorrect matches. Our method is notably more
accurate. Also, the similarity score often has clear transition between correct and
incorrect retrievals. Fig. 3 shows a comparison of the 2D t-SNE embedding [54]
between the descriptors using the pretrained model and our multitask learning
approach. Our descriptors cleanly group images of the same person together.

We quantify the association accuracy in Fig. 4. For the all sequences, scene
specific adaptation of the pre-trained descriptor improves the discrimination of
frequently visible actors: 94% vs. 68% 1-NN classification accuracy for [C] and
90% vs. 75% for [T]. However, the discrimination of descriptor for the camera
holders decreases: 56% vs. 85% for [C] and 35% vs. 42% for [T]. Our multi-
task descriptor learning, combining the strength of the classification and metric
learning loss, improves both these case (92%/95% for actors/holders on [C] and
89%/61% for [T]) and has an overall baseline improvement of 17% [C], 9% for
[T]3, and 9% for [H]. Many false matches due to the confusing appearance de-
scriptor extracted from the generic CNN model are suppressed.

Fig. 5 shows our analysis of the number of cameras, the tracklet noise, and
the training videos length on 1-NN matching accuracy. We notice that multi-
view constraints are more helpful than temporal constraints as there are small
improvements compared to the pretrained model P when 1 or 2 cameras are
used (mostly corresponding to the small baseline cameras hold by one person).
The improvement is saturated when more than 6 cameras are used. Regarding
tracklet noise, our algorithm can improve the baseline if the noise percentage
is less than 4%. High noise leads to fewer, and potentially incorrect, multiview
tracklets from pairwise matches and leads to slightly inferior accuracy compared
to P. Lastly, even finetuning on 1/6th of the sequences leads to a notable im-
provement over P and performance converges after 2/6th of the sequence is used;
this indicates that our method could be used on a smaller training set (e.g., first
15 minutes of a game) and applied to the rest.

6.2 Analysis of Descriptor Clustering

Since each video could contain tens of thousands of people detections, clustering
all detectors for all videos jointly could be computationally costly. We adaptively

3 The results for [T] was obtained with cleaned tracklets.
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Fig. 2: 10-NN cross-view matching of the several people with confusing appear-
ance and their cosine similarity score using the pretrained model and our mul-
titask descriptor learning (MTL). Green denotes the query and red denotes in-
correct matches. We label the query in green and wrong association in red. Our
method retrieves more positive matches and provides easy-to-separate similarity
score. All top three neighbors are of the same person.
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s

(a) Pretrained (b) MTL

Fig. 3: t-SNE visualization of the person descriptor extracted using a pretrained
model and our multitask learning (MTL) for sequence [C]. Except for images of
the same tracklet within a single view, the pretrained descriptors are scatter. Our
descriptor groups images of the same person from all views and time instances
into cleanly separated clusters. See Fig. 4 for extra quantitative evidences.

Pretrained: 68% MB: 75% MLT: 77%

Pretrained: 76% Pretrained: 74% MTL: 83%MB: 78%MB: 83% MLT: 93%

Fig. 4: The confusion matrix of the top-1 matches for the all sequences ([C] top
left, [T] top right, [H] bottom) at different stages: pretrained model, multiview
bootstrapping (MB), and multitask learning (MTL). There are consistent im-
provements in accuracy as more sophisticated stage is executed.
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Fig. 5: 1-NN matching accuracy analysis of the proposed method for different
number of cameras, percentage of tracklet noise (two or more people grouped in
1 tracklet), and fraction of domain data required for generalization. P denotes
the pretrained model. Please refer to the text for the details.
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Fig. 6: The 2D projection of the keypoints to all views corresponds well to the
expected person anatomical keypoints and tracks people even through occlusions.
Please see supplementary material for the result of [T].

sample the people detector according to their 2D proximity with other detec-
tors and the speed of the detector within each tracklet. All close-by detectors
are sampled. Detectors that can be linearly interpolated by others within the
same tracklet are ignored. Detectors with less than 9 keypoints detected are also
ignored as they are not very reliably grouped which may hurt subsequent 3D
reconstruction. These detectors usually correspond to partially occluded people.

Tab. 3 quantifies the performance of different descriptor learning algorithms
by the number of clusters automatically determined by the algorithm, the Ad-
justed Rand Index (ARI)4, and cluster accuracy for all detected people in both
sequences. In [T], the algorithm discovers many clusters of the pedestrians who
are not participating in the group activity.

Chasing [C] Tagging [T] Halloween[H]

#clusters ARI Accuracy #clusters ARI Accuracy #clusters ARI Accuracy

Pretrained 21 .88 90.1% 66 .85 86.8% 86 .77 79.5%

MTL 16 .97 98.3% 45 .94 95.6% 71 .85 88.1%

Table 3: Analysis of the supervised clustering by the number of clusters, ARI
measure and clustering accuracy. Although all methods detected clusters than
needed, they correspond to the small cluster of pedestrians who do not partici-
pate in the activity (often seen in [T]) or not fully visible bodies due to occlusion.
Clustering our multitask learning (MTL) descriptors achieves near perfect clus-
tering accuracy (98.3% for [C] and 95.6% for [T])))

4 The ARI is a measure of the similarity between two clusters with different labeling
systems and is widely used in statistics [55].



Automatic Adaptation of Person Association of Multiview Tracking 13

r [33] Ours: No tracklets Ours: Full

0.3 67.0% 71.6% 71.9%

0.5 74.1% 75.8% 76.2%

Table 4: MODA comparison for different radius threshold r on ETHZ.

Chasing Tagging

Per-frame Human aware Per-frame Human aware

Length Dev. (cm) 7.9 1.5 13.4 1.4

Symmetry Dev. (cm) 9.0 1.2 10.1 1.3

Table 5: Comparison between per-frame 3D skeleton reconstruction using ground
truth association and human aware reconstruction. Temporal integration and the
physical body constrains improve the 3D skeleton stability by 5 to 10 times.

6.3 Comparison with Previous Methods

Direct comparison with previous methods is not straight forward. We focus on
long term tracking of group activities in the wild from multiple uncalibrated and
unsynchronized handheld cameras. In contrast, existing reID datasets [12–14]
do not have overlapping cameras capturing the same event, which invalidates
our multiview constraint. Prominent single view tracking methods [34, 37, 38]
and datasets [56] focus on short term tracklet generation rather than long term
tracking. The most similar methods to ours are multiview tracking approaches,
though they usually require fixed, calibrated, and synchronized cameras [5, 31–
33] and assume non-recurrent behavior of pedestrians in their presented datasets.
Nevertheless, we show a comparison of the Multiple Object Detection Accuracy
(MODA) with the state-of-the-art multiview tracking method of Baqué et al. [33]
on their ETHZ dataset in Tab. 4. Due to large number of negative samples,
our method outperforms [33] without using single-view 2D tracking for triplet
generation. The accuracy gain of our full method is modest because frequent
occlusions and frame sub-sampling prohibit long single-view 2D tracklets.

6.4 Application: 3D Human Skeleton Tracking

As a baseline, we use the ground truth people association to perform a per-
frame multiview triangulation along with limb length symmetry constraints link
this reconstruction temporally using ground truth person tracking. As shown in
Fig. 7, this method does not exploit temporal coherency of the skeleton struc-
ture, and fails to obtain smooth and clean human trajectories for [C] and [T].
Our method succeeds despite the strong occlusion and complex motion pattern
(see the trajectory evolution). Quantitatively, we show 5 to 10X improvement
over the baseline (see Tab. 5). We visualize the reprojection of 3D keypoints
to all views for [C] in Fig. 6. The reprojected points are close to the anatom-
ical keypoints. These results demonstrate the applicability of our algorithm to
markerless motion capture completely in the wild.

7 Discussion and Conclusion

We have presented a simple and practical pipeline for markerless motion cap-
ture of complex group activity from handheld cameras in open settings. This is
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t=10s t=20s t=30s t=40s t=50s

Per-frame 3D reconstructionHuman aware 3D tracking: View 2Human aware 3D tracking: View 1

t=5s t=10s t=15s t=20s t=25s

Defects

Per-frame 3D reconstructionHuman aware 3D tracking: View 2Human aware 3D tracking: View 1

Defects

Fig. 7: 3D tracking for [C] and [T] over the entire course of action. The odd rows
show the comparison between per-frame 3D reconstruction with ground truth
people association and temporally linked for visualization and our algorithm.
The even rows show the evolution of the activity using our tracker. Our method
succeeds in associating people coming in and out of the camera FoV and gives
smooth and clean trajectories despite strong occlusion, similar people appear-
ance, and complex motion pattern. Please see supplementary material.

enabled by our novel, scene-adaptive person descriptor for reliable people asso-
ciation over distant space and time instances. Our descriptor outperforms the
baseline by 18% and our 3D skeleton reconstruction is 5-10X more stable than
naive reconstruction even with ground truth people correspondences on events
captured from handheld cameras in the wild.

Tracklet generation is crucial for descriptor bootstrapping. Noisy tracklets
can severely degrade the descriptor discrimination. While more sophisticated
algorithms could be used to improve the tracklet generation quality [24, 36], the
problem may still remain for scenes with people wearing similar and textureless
clothing. One prominent solution is the use of robust estimator for the distance
metric loss under the graduated non-convexity framework [11, 57].

Any interesting dynamic event could be overly crowded and people often fully
occlude the static background. Since the number of static features observed from
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any views is significantly smaller than the number of dynamic features, camera
localization is very challenging. A feasible solution could use people association
and their keypoints to alleviate the need of many static features.
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