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Lighting is a critical element of portrait photography. However, good
lighting design typically requires complex equipment and signi�cant time
and expertise. Our work simpli�es this task using a relighting technique
that transfers the desired illumination of one portrait onto another. �e
novelty in our approach to this challenging problem is our formulation
of relighting as a mass transport problem. We start from standard color
histogram matching that only captures the overall tone of the illumination,
and show how to use the mass-transport formulation to make it dependent
on facial geometry. We �t a 3D morphable face model to the portrait, and
for each pixel, combine the color value with the corresponding 3D position
and normal. We then solve a mass-transport problem in this augmented
space to generate a color remapping that achieves localized, geometry-
aware relighting. Our technique is robust to variations in facial appearance
and small errors in face reconstruction. As we demonstrate, this allows
our technique to handle a variety of portraits and illumination conditions,
including scenarios that are challenging for previous methods.
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1 INTRODUCTION
Good lighting is a key component of portrait photography. Pro-
fessional photographers design complex con�gurations of strobe
lights and re�ectors to accentuate di�erent aspects of a subject’s
appearance, and achieve a particular look. Designing these lighting
setups requires signi�cant time and expertise, making high-quality
portrait photography challenging for casual photographers and
time-consuming for professionals.

�e goal of our work is to make portrait lighting easier by allow-
ing users to transfer the illumination from a reference portrait to
an input photograph to create high-quality relit images . We wish
to do this without any calibration of the lighting or any additional
meta-data, thereby enabling post-capture portrait relighting. In
addition to allowing users to easily explore di�erent lighting con-
�gurations, our work has applications in portrait retouching, and
post-production editing and compositing.
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While face relighting has been studied extensively [Shashua and
Riklin-Raviv 2001; Wang et al. 2009; Wen et al. 2003], it remains
a challenging problem due to, for instance, variations in appear-
ance, pose, identity, and expression. Furthermore, human observers
are sensitive to the subtleties of facial appearance, and have a low
tolerance to errors in processed face images. Standard face edit-
ing approaches �t low-dimensional parametric models to facial ap-
pearance data to achieve robustness, but these models o�en do not
achieve high visual �delity. We address these challenges with a novel
approach to portrait relighting: we pose it as a multi-dimensional
mass transport problem that computes a non-parametric mapping
between the input and reference images.

We start with standard color histogram matching which captures
the global color and tone of lighting by transferring the color dis-
tribution of the reference onto the input portrait. �is approach
ignores the fact that shading depends on face geometry, and un-
surprisingly produces subpar results. We extend this technique to
make it aware of the geometry of the face. First, we �t a generic 3D
model to the portrait [Yang et al. 2011]. We use this model to aug-
ment the color at each pixel with position and normal information.
We then exploit the known formulation of histogram matching as
a mass-transport problem, and extend it from color space to the
higher-dimensional {colors} × {positions} × {normals} space. �is
generates a color mapping that is aware of face geometry, and is
able to capture the localized, directional nature of lighting changes.
We further make this process robust to variations in face appearance
and geometry by smoothing the color distributions of the input and
reference. Despite the high-dimensionality of the exact mapping,
we explain how this can be achieved using stochastic sampling,
which allows us to use an existing mass-transport solver [Rabin
et al. 2012] to e�ciently compute our results.

Our approach has several advantages. Being non-parametric, it
makes few assumptions on face appearance and illumination, which
enables it to handle a wide range of lighting conditions and sub-
jects, including non-photorealistic images. �e robustness resulting
from the regularization allows us to rely on a generic 3D model
and makes our results robust to possible minor misalignment. We
demonstrate these properties on a variety of subjects and illumi-
nations, and show via a user study that our algorithm produces
plausible relighting results that are superior in many cases to other
relighting techniques.

Contributions. In summary, our contributions are:
1. A novel approach to face relighting that uses a mass-transport

formulation to transfer illumination between images.
2. A regularization scheme that makes the technique robust to

variations in face appearance and geometry.
3. A complete pipeline that improves the state of the art in face

relighting and compositing.

ACM Transactions on Graphics, Vol. 9, No. 4, Article 39. Publication date: March 2010.

http://dx.doi.org/0000001.0000001_2


39:2 • Shu, Z. et al

2 RELATED WORK

Single-Image Face Relighting. Face relighting using a single
image has been studied extensively in the context of face recogni-
tion [Adini et al. 1997; Georghiades et al. 2001]. Shashua and Riklin-
Raviv [2001] proposed the quotient (or ratio) image technique for
face relighting, where an input face image is relit by multiplying it
by the ratio of a known reference face captured under novel lighting
and the original input lighting.

Subsequent work relaxed the requirement for reference images
under calibrated illumination by reconstructing face geometry and
using it to estimate low-frequency illumination [Wang et al. 2009;
Wen et al. 2003]. Ratio images have also been used to transfer sub-
tle shading variations caused by changes in expression [Liu et al.
2001], and match lighting for face compositing [Bitouk et al. 2008].
Chen et al. [2011] use edge-preserving �lters to create base and
detail illumination layers which are used to transfer low-frequency
lighting between images. Blanz and Ve�er [1999] proposed using
low-dimensional shape and texture models to reconstruct face ge-
ometry, albedo, and scene lighting from a single image. �ey used a
combination of ambient illumination and a single directional light
source. �is was later extended to handle complex illumination and
harsh lighting [Wang et al. 2009].

�ese techniques assume speci�c appearance models, e.g., Lam-
bertian shading under distant lighting, and require accurate 3D
reconstruction. �ey perform well when these assumptions are
satis�ed but as we shall see in the result section, their accuracy
decreases when these assumptions do not hold. For instance, some
sophisticated lighting setups may not be well represented by these
models and 3D reconstruction o�en su�ers from minor inaccuracy
and misalignment. In contrast, our formulation does not assume
a speci�c illumination model and is robust to small imperfections,
which allows it to perform well on cases where other techniques
fail.

Lightstage Face Relighting. Debevec et al. [2000] estimated the
re�ectance �eld of a subject’s face from images captured under
a dense set of illumination directions. �is data can be used to
drive that subject’s facial performances under arbitrary illumina-
tion [Alexander et al. 2009]. Peers et al. [2007] used the re�ectance
data of one subject to compute ratio images which are used to relight
another subject’s facial performance. While these techniques pro-
duce very impressive relit faces, they depend on complex calibrated
acquisition setups. On the other hand, our work is a lightweight
face relighting technique that does not require any additional data.

Color Transfer for Relighting. Color transfer techniques [Rein-
hard et al. 2001] match color and tone statistics between images and
can capture the overall tone of the reference illumination. Pitié et
al. [2005] proposed a multi-dimensional histogram matching scheme
that transfers the full 3D color distributions of a reference photo-
graph to the input. Our mass transport formulation extends these
techniques by incorporating geometry, and by using a di�erent op-
timization scheme to produce more robust transfer results. Recent
work has used localized color transfer to produce results that are
more representative of lighting variations [La�ont et al. 2014; Shih
et al. 2013]. In particular, Shih et al. [2014] transfered a particular

photographer’s style, including lighting, to a given image. �eir
technique assumes the e�ect of lighting is low-frequency and as
we show, it has limited ability to handle con�gurations like side
illumination and high-contrast shading.

Mass Transport for Image Editing. Bonneel et al. [2011] used
mass transport to interpolate displacements between high-dimensio-
nal distributions, and apply it to problems such as BRDF interpola-
tion and histogram transfer. Solomon et al. [2015] proposed an algo-
rithm for computing optimal mass transport on geometric domains
using an approximate distance metric that can be evaluated e�-
ciently using convolutions. Rabin et al. [2012] proposed an e�cient
approximate mass transport solver that uses a series of 1D histogram
matching operations on the axes of the problem space to compute
the Sliced Wasserstein distance. �ey applied this algorithm to the
problem of texture mixing. Similarly to these works, our approach
uses mass transport but for a di�erent application, portrait relighting.
Furthermore, while these existing techniques use mass transport in
the domain on which their application data are de�ned, e.g., the 3D
space of colors for histogram transfer, we cast the relighting problem
in the higher-dimensional space {colors}× {positions}× {normals}
to make our algorithm aware of local face geometry.

3 MASS-TRANSPORT FORMULATION
In this section, we describe the core component of our approach,
the mass transport formulation. We �rst express color histogram
transfer as a mass-transport problem in the context of portrait re-
lighting, and introduce an algorithm that incorporates positions and
normals.

Given an input image I and a reference image R, we create a
relit output image O with the lighting of the reference and the
pose, identity, and expression of the input photograph. We �t a
3D face model to the 2D portrait using the Expression Flow algo-
rithm [Yang et al. 2011]. We project the 3D positions and surface
normals of the 3D model onto the image plane to get per-pixel po-
sitions and normals. �is gives us a color–position–normal vector
(c, p,n) at every pixel of the input and reference images. We trans-
fer lighting from the reference to the input image by matching the
distributions of these high-dimensional vectors in the joint space
{colors} × {positions} × {normals}. From this matching, we retain
only the colors of the transformed input distribution and use them
in conjunction with the original positions to create the �nal relit
image. Figure 1 illustrates the pipeline of our technique.

3.1 Reformulating Color Histogram Transfer
Reinhard et al. [2001] matched the color of two images by transfer-
ring the color statistics from one image to the other. Pitié et al. [2005]
extended this by transferring the full 3D color histogram, thereby
encompassing all color-related statistics. As shown in Figure 2, for
face relighting, this approach generates approximate results that
only capture the overall color and tone of the lighting. We will dis-
cuss this issue in more detail later but �rst, we present the previously
known interpretation of the color histogram matching process as a
mass-transport problem. �is interpretation will be the foundation
of our solution to generating be�er face relighting results.
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Fig. 1. Pipeline of portrait lighting transfer. We fit a generic 3D face model to the input and reference images. We use this model to extract per-pixel positions
(2D) and normals (3D), extrapolate them from the face to the background, and concatenate them with the image RGB channels. We then compute the optimal
mass transport from the input to the reference using the 8D data to obtain our output relit image. The output position and normal channels are discarded.
Images courtesy: Flickr user Geo� Stearns (input), Flickr user rpavich (reference).

Histogram transfer is known to be related to mass transport, e.g.,
[Bonneel et al. 2011]. Intuitively, the input and reference histograms
can be seen as sand heaps and one seeks to move the sand to trans-
form the input heap into the reference heap while minimizing the
amount of work (de�ned by the product of the transported mass by
the distance over which it is transported). In the context of color
histogram transfer, the mass-transport approach seeks to match the
target histogram by modifying the input colors as li�le as possible,
which is a desirable property for many applications. Formally, the
mass-transport problem in the context of color histogram transfer
is de�ned as follows: We use HI and HR to denote the normalized
color histograms of the input and reference images, respectively,
and i and j to index the input and reference colors. For the distance
between input pixel with color i and reference pixel with color
j, we use the L2 norm in color space, ‖ci − cj ‖, where ci and cj
are 3D vectors representing i and j colors. With this notation, the
mass-transport problem seeks to minimize:

arg minTi j
∑
i

∑
j
‖ci − cj ‖2 Ti j (1a)

such that: Ti j ≥ 0 (1b)∑
j Ti j = HI (ci ) (1c)∑
i Ti j = HR (cj ) (1d)

where the unknownsTi j represent the proportion of the pixels with
color i that are assigned to color j . �e sum in Equation 1a represents
the total amount of work needed to transform HI into HR . �e
constraint (1b) enforces the non-negativity of the masses, and (1c)
and (1d) ensure that the entire input histogram is matched to the
entire reference histogram. �e minimal amount of work (Eq. 1a)
is known as the Earth Mover’s Distance [Rubner et al. 2000] or
the Wasserstein Distance [Villani 2003, 2008] between the input
and reference histograms. Equation 1 is o�en refered to as the
Kantorovich formulation of the transport problem and amounts to
a linear program [Villani 2003, 2008].

Deriving a Mapping. Transport T creates correspondences be-
tween the input and reference colors. �e solution of the above
mass-transport formulation (Eq. 1) is a coupling, i.e., an input color
may be associated to more than one reference color. In our context,
a coupling of this form is undesirable because it could introduce dis-
continuities in regions of uniform color. Instead, we seek a solution
that is a mapping, i.e., all the pixels with the same color are associ-
ated to the same reference color. Formally, we are interested in the
case where each input color ci is assigned a single reference color.
We name ji the index of that reference color and f the function
that maps ci to cji , i.e., f (ci ) = cji . In this context, the transport
problem becomes:

arg minf
∑
i
‖ci − f (ci )‖2 HI (ci ) (2a)

such that: Hf (I ) = HR (2b)
�e energy above (Eq. 2) is known as the Monge formulation of
the transport problem and unlike the coupling case, it may not
always have a solution, for instance when the input and reference
images have di�erent numbers of colors. �at being said, there exist
solvers that provide approximate solutions, e.g., [Bonneel et al. 2011;
Rabin et al. 2012]. We use the Sliced Wasserstein Distance algorithm
[Rabin et al. 2012] that estimates a mapping f such that Hf (I ) ≈ HR .
As we shall see in our validation section, this is su�cient to generate
visually pleasing results. We further describe the Sliced Wasserstein
Distance solver and its characteristics in Section 3.4.

3.2 Incorporating Positions and Normals
�e problem with the color transfer technique discussed in the
previous section is that it ignores the geometry of the face. For
instance, a pixel on the forehead in the input image might have the
same color as a pixel on the cheek. �e color-only transfer will map
both of these pixels to the same reference color leading to a relit
result that does not capture the geometric dependence of lighting
changes (Fig. 2c).
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(a) Input (b) Reference (c) Color only (d) Color and (e) Color, (f) Our result
position position, and normal

Fig. 2. Comparison of di�erent transport strategies. Color-only transfer matches the tone of the lighting but not the angular distribution (c). Incorporating
position leads to localized variations (d), which are further improved by adding normals (e). These results have some artifacts because of large jumps in the
transport; adding regularization via sampling eliminates them to produce a visually pleasing result (f). Images courtesy: Flickr user Sven Walter (input), Flickr
user Brian Holland (reference).

We address this problem by accounting for the position and nor-
mal at each pixel in addition to its color. �e position p and normal
n of a pixel are obtained by ��ing a 3D face model to the image
and projecting the 3D positions and normals onto the image. Our
approach extends the formulation of Equation 2 by adding a posi-
tion and a normal component to the distance function and to the
histograms. For the sake of clarity, we introduce s = (c, p,n), the
vector concatenating the color, position, and normal of a pixel. �is
leads to the following problem:

arg minf̂
∑
i

∑
j

(
wc ‖ci − f̂c(si )‖2 +wp ‖pi − f̂p(si )‖2

+wn ‖ni − f̂n(si )‖2
)
ĤI (si )

(3a)

such that: Ĥf̂ (I ) = ĤR (3b)

where ĤI and ĤR denote the normalized input and reference his-
tograms in the {colors} × {positions} × {normals} product space,
f̂c, f̂p, and f̂n are the color, position, and normal components of f̂ ,
and wc, wp, and wn are weights that control the relative in�uence
of the colors, positions, and normals in the transfer process.

�e color-only approach (Eq. 2) minimizes only color variations,
and can map spatially distant pixels to each other, as long as their
colors are similar enough. Incorporating positions and normals into
the transport formulation (Eq. 3) makes the mapping account for
facial geometry. �e position term ‖pi− f̂p(si )‖ penalizes long-range
pairings, and favors local correspondences that preserve the spatial
layout of the reference illumination. Similarly, the normal term
‖ni − f̂n(si )‖ discourages correspondences between points oriented
di�erently. �is is especially useful in regions such as the two
sides of the nose that are spatially close but are o�en lit di�erently.
Figure 2 illustrates the bene�ts of each term in Equation 3a.

Similar to Equation 2, the transport that minimizes Equation 3
creates a mapping f̂ that generates an output with the histogram
ĤR when applied to I . Because this transport is de�ned in the
product space, it modi�es the input pixel positions and normals in
addition to their colors, i.e., it alters the colors and warps the face
geometry. Since our goal is to transfer only the reference lighting
while retaining the input face geometry, we restrict the e�ect of the

(a) Red and blue samples
with mismatched
distributions generate a
discontinuous mapping
(black arrows).

(b) Stochastic samples
(hollow) approximate a
Gaussian convolution
(shaded) and provide more
matching options.

(c) The resulting mapping is
smoother.

Fig. 3. When two histograms di�er, the mass-transport solution o�en gen-
erates an irregular mapping. For example, the input samples at the bo�om
are close to each other but are mapped to di�erent reference values (a).
Adding new samples to approximate Gaussian convolution (b) generates a
smoother mapping, i.e., nearby samples are transformed similarly (c).

transport to the color space c, that is, we only apply f̂c to the input
image I .

3.3 Regularization via Stochastic Sampling
So far, we have implicitly assumed that two faces under the same
illumination generate images with similar histograms. But in prac-
tice, real-world variations in face geometry, pose, and lighting lead
to di�erences in the histograms that can degrade the quality of the
result if not handled properly. For example, if the shadow regions
on the reference face are larger, a strict transfer introduces shadows
in regions of the input face that should be lit. Variations in skin
texture can also lead to local perturbations. In terms of transport,
two di�erent faces generate distributions with minor mismatches,
e.g., with slightly di�erent proportions of dark pixels. �is generates
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a mapping with discontinuities, which in turn creates the minor
degradations seen in Figure 2.

We address this problem by regularizing the transport to prevent
large local disparities in the correspondences. Appendix 1 details
how we smooth the mapping function f̂c using stochastic sampling.
In short, we replace each sample (c, p,n) by ns stochastic samples
with the same position p and n but color c + ν where the random
vector ν follows a Gaussian distribution Gσ . Intuitively, the ad-
ditional samples o�er new correspondence options that allow the
solver to �nd a smoother mapping. Compared to entropy-based reg-
ularization [Solomon et al. 2015], our approach has the advantage
that it still produces a mapping. Figure 3 shows the e�ect of this
technique, and Figure 2(e) compares it to the no-regularization case.

3.4 Solving the Mass-Transport Problem
�e mass transport formulation described in Equation 3 can be
solved using linear program solvers. However these solvers are com-
putationally intractable for a large number of points. Our particular
problem is challenging for these methods; relighting a 640 × 480
image requires estimating the transport of a million points (with
stochastic sampling) in an 8D space. Instead of solving for the exact
transport, we use the solver proposed by Rabin et al. [2012], that
approximates the transport energy (Eq. 1a), a.k.a. the Wasserstein
distance, by the sum of 1D transport energies that correspond to
projections onto arbitrary axes. �is approximation is known as the
Sliced Wasserstein Distance and leads to an iterative algorithm that
solves a series of 1D mass-transport problems, which can be done
e�ciently using 1D histogram matching.

�e algorithm works as follows: For simplicity, we assume that
each pixel corresponds to a unique (c, p,n) triplet and that i and j can
also be used to index pixels. If two pixels share the sample triplet, we
create a sample for each and our solver handles the situation seam-
lessly. We omit that degenerate case to simplify the presentation
and pseudo-code (Alg. 1). We name si (t) = (ci (t), pi (t),ni (t)) the
input sample points a�er iteration t . At each iteration, the input and
reference points are projected onto the axes of a randomly oriented
coordinate system. A 1D histogram transfer along each axis of this
coordinate system is performed between the projected input and
reference points to create the intermediate input values s̃i (t). �e
modi�ed input points at the (t + 1) iteration are obtained by taking
a partial step in this direction, i.e., si (t + 1) = (1 − α)si (t) + α s̃i . In
practice, we use α = 0.2 as in [Bonneel et al. 2015a] and niter = 300
iterations. Algorithm 1 summarizes this process.

�is algorithm is equivalent to the N-dimensional PDF transfer
technique of Pitié et al. [2005], the di�erence being that they move
the input points by a full step (i.e., α = 1) in each iteration. In
practice, we found that the algorithm by Pitié et al. requires only
about 20 iterations, which makes it faster, but its output varies
between runs. In comparison, the Sliced Wasserstein solver is slower
but produces consistent results. In our paper, we use the la�er to
demonstrate reproducible results but practitioners who can tolerate
result variability and value speed may be be�er served by the former.

ALGORITHM 1: Face relighting pseudo-code

Input: Input image I and mask MI
Reference image R and mask MR

Output: Output image O
// Fit a 3D face model to the input and reference portraits
Estimate 3D positions and normals for I and R

// Create arrays of 8D points from the input and reference pixels
SI ← empty array
for each pixel i of image I do

if pixel i inside mask MI then
for k ← 0 to ns − 1 do // Create ns stochastic samples

Draw random 3D vector ν according to Gσ
SI [nsi + k ] ← (ci + ν, pi , ni )

end
end

end
Construct SR similarly using the reference pixels

// Initialize the output points with the input pixels
SO ← empty array
for each pixel i of I do
SO [i] ← (ci , pi , ni )

end

// Repeatedly transform the points
for k ← 1 to niter do

Select random 8D coordinate system F
Express all the samples of SI , SR , and SO in F
for d ← 1 to 8 do

Compute 1D histogram transfer function τd along d th axis
end
for each sample s of SI do

s̃← (τ1(s1), τ2(s2), . . . ) // with s = (s1, s2, . . . )
s← α s̃ + (1 − α )s

end
Transform the samples in SO similarly

end

// Keep only the color for the output
for each pixel o of image O do
(co, po, no ) ← SO [o]
O [o] ← co

end

3.5 Discussion
While our mass transport formulation globally matches the input
and reference distributions, it also captures localized lighting vari-
ations. As previously noted, the geometric components of the dis-
tributions, positions and normals, encourage mappings between
pixels with similar location and orientation, leading to color transfer
between consistent geometric regions. Also, instead of commi�ing
to the original 3D geometry, our technique implicitly re�nes the
position and normals to be�er align the images. �is makes it robust
to errors in the 3D face reconstruction that o�en compromise the
quality of results from previous methods.
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(a) Input (b) Reference (c) wp=wn=0, (d) Our result, (e) wp=wn=10, (f) wp=wn=50, (g) wp=wn=50,
and regularization wp=wn=1, and regularization and regularization no regularization

and regularization

Fig. 4. We show the e�ect of di�erent position and normals weights on the relit result for the input (a) and reference image (b) shown above. Se�ing the
weights to 0 results in color-only transfer where only the overall color and brightness of the lighting is captured (c). Our technique sets the weights to 1, to
transfer the lighting from the le� (d). Increasing the weight to 10 (e) and 50 (f) progressively approaches a pure warping technique and the result takes on the
appearance of the reference subject. At high weights, our stochastic sampling regularization creates noisy results. Removing the sampling and se�ing the
weights to 50 makes the warping of the reference clear (g). Images courtesy: Flickr user John Ragai (input), Flickr user David Spinks (reference).

Our technique can be thought of as a combination of two com-
ponents: geometric warping (adjusting the positions and normals
to be�er match colors) and color blending (manipulating the colors
to be�er explain the geometric correspondences). �e in�uence
of each component on the �nal result is controlled by the weights
(wc,wp,wn) of the di�erent terms in the mass transport formula-
tion (Eq. 3). Se�ing the position and normal weights to zero, i.e,
wp = wn = 0, results in color-only transfer. As seen in Figure 4,
when these weights are set to high values, e.g., wp = wn = 50 and
wc = 1, the geometric warping takes over, and the output looks
like a warped version of the reference subject. While our stochas-
tic sampling-based regularization plays a crucial role in avoiding
artifacts, at high geometric weights, it generates noisy results be-
cause the transfer starts approaching per-pixel warping. We found
that wc = wp = wn = 1 results is a good balance between the
components and produces the best results.

4 IMPLEMENTATION

4.1 Implementation
In our prototype, each pixel is represented by its 3D RGB color, a 2D
vector describing its position on the ��ed face model, and a unit 3D
vector for its normal 1. For the position component, we use the x
and y coordinates of the corresponding point on the 3D face model,
where x stands for the le�–right axis and y for the down–up axis.
We also experimented with adding the z coordinate (for the back–
front axis) but did not observe any di�erence. We did not include it
in our �nal prototype to reduce its computational complexity. For
the regularization, we use ns = 5 stochastic samples at each pixel
and a standard deviation σ = 0.1 for the Gaussian distribution Gσ
(assuming that each RGB channel spans [0; 1]). When matching
the input image to the reference, we do not explicitly build the 8D
histograms or the 16D transport. �e Sliced Wasserstein Distance
algorithm allows us to maintain a list of all the samples, which can
be modi�ed in place. We set wc = wp = wn = 1 throughout all
experiments. Unless otherwise speci�ed, we used 600 × 500 images,

1Normals are inherently 2-dimensional quantities, i.e., nz can be derived from nx and
ny , but for simplicity we use the full 3D normal representation.

which took about 3 minutes to process using MATLAB code. We
present a faster implementation using two-scale manipulation in
section 4.2.

Handling non-face regions. �e 3D face model gives us positions
and normals only on the face region of the portraits. We smoothly
extrapolate the positions and normals to the rest of the image by
solving a Poisson system with gradients set to zero. We compute
the matching functions using only the face samples, but apply them
to the entire image. In particular, in every iteration of the matching
process, we compute the 1D histogram transfer functions only using
the samples on the face mesh, and apply them to every sample.
Algorithm 1 summarizes the entire pipeline of our portrait relighting
technique.

Skin tone preserving relighting. Operating on the joint space
of pixels’ colors, positions and normals allows us to transfer the
color of both light and skin re�ectance from the reference to the
input. If the input and chosen reference di�er in skin re�ectance,
the corresponding result may exhibit a shi� in the perceived light
color (Fig. 5a, c). In our framework, the user can also transfer only
the lighting direction, by simply replacing the pixel colors c with
lightness, e.g. L channel in Lab color space, in Algorithm 1, and
keeping the color channels (e.g. a and b channels) the same as in
the input (Fig. 5d).

4.2 Two-Scale Manipulation
We now introduce our complete pipeline for portrait lighting trans-
fer: a two-scale variant of Algorithm 1 (Fig. 6) that can accelerate
lighting transfer for high resolution images, while also reducing the
amount of noise in the result (Fig. 7).

With a �xed number of stochastic regularization samples and
iterations, the complexity of Algorithm 1 is O(N logN ), with N
being the number of pixels in the input-reference image pair. Since
this algorithm usually takes hundreds of iterations to converge
to a satisfying result, it is prohibitively slow for large input im-
ages. However, face illumination e�ects are mostly large-scale or
low-frequency [Haddon and Forsyth 1998; Jacobs et al. 1998]; for
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(a) Input (b) Reference

(c) Transfer color (RGB) (d) Transfer lightness (L in Lab)

Fig. 5. Skin tone preserving lighting transfer. Relighting the input (a) by
the reference (b) in RGB space transfers skin color too (c), while doing so
using lightness only (L in Lab) retains the original skin and light colors(d).
Images courtesy: Flickr user Dmitry Kolesnikov (input), Sabphoto/Adobe
Stock (reference).

example, the residual detail in Figure 6 (d) contains very few illu-
mination cues. As a result, it is possible to relight the image at a
coarse scale, and retain the details at original scale.

Our proposed two-scale pipeline, illustrated in Fig. 6, is as follows:
(1) We �rst downsample the input and reference images to a coarser

scale (lower resolution) and generate a relit result at this scale.
(2) Similar to the work of Bae et al. [2006], we decompose the input

into two components using an edge-aware smoothing �lter [He
et al. 2013]: a smoothed base and an additive residual.

(3) We upsample the result from step (1), and apply step (2) to the
upsampled image.

(4) We add up the relit base from (3) and the residual from (2) to
synthesize the �nal result of the two-scale manipulation.

For input and reference images with resolution 1000 × 1320, the
transport computation time is reduced from about 700 seconds
to about 55 seconds with the two-scale manipulation and 1

4 ×
1
4

down-sampling in our MATLAB implementation, using the same
amount of regularization (4× stochastic sampling) and same number
of iterations (200). �is scheme also has the e�ect of smoothing out
the contrast enhancement caused by the mass transport operation,

down-sampling

relight 

edge-preserved 

filtering
up-sampling 

and 

edge-preserved filtering

+

Fig. 6. Two-scale manipulation pipeline. Input (a) and reference (b) are
down-sampled to generate a low-resolution relit result 1 (c). Input and up-
sampled result 1 are filtered by an edge-preserving filter [He et al. 2013]. The
detail (represented by the additive residual (d)) of the input is transferred
to the up-sampled-and-filtered result 1 to generate our lighting transfer
result (e) at the original resolution. In a post-processing step, the user can
choose to replace the background for be�er visual e�ect (f). Images courtesy:
Flickr user Geo� Stearns (input), Flickr user rpavich (reference).

leading to less noise and artifacts in the results (Fig. 7). Finally, users
can choose to post-process the image by replacing the background
of the output for be�er visual e�ect (Fig. 6(f)) with existing portrait
segmentation tools (e.g. [Shen et al. 2016]).

5 EXPERIMENTAL RESULTS
We now demonstrate our portrait relighting algorithm and compare
it to existing techniques. We then show additional results on related
applications such as illumination painting, relighting from paintings,
and realistic compositing. We provide more results in our online
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(a) Result using a single scale (b) Result using two scales
(0.25 × 0.25 down-sampling)

Fig. 7. Our two-scale method accelerates the relighting process, while also
alleviating noise from over-sharpened contrast (see zoom-in on le�).

supplementary material 2, where we also include examples in higher
resolution.

5.1 Results and �alitative Comparisons
In Figure 18, we transfer lighting from reference images that vary
signi�cantly in terms of identity, pose, expression, and gender. In
all of these cases, we automatically produce artifact-free results that
closely mimic the reference lighting.

Comparisons with Previous RelightingMethods. We compare
our technique to three previous face relighting methods. �e method
of Wen et al. [2003] models facial appearance with spherical har-
monics. �ey �t a morphable model to the portraits and estimate
the input and reference radiance maps. With these radiance maps,
they compute a ratio image used to relight the input image. For
our comparison, we used the same morphable model used in our
algorithm. As can be seen in Figure 8(c), this technique relies heavily
on the accuracy of the 3D reconstruction and violations of the ap-
pearance model or errors in the reconstruction introduce artifacts in
the results. In addition, this technique only relights the face region,
where the geometry is available. Chen et al. [2011] (Fig. 8(d)) apply
edge-preserving �lters to separate shading into base and detail lay-
ers, and transfer the base illumination from the reference to relight
the input. �is technique is an improvement over that of Wen et
al., but o�en transfers the reference appearance without capturing
the lighting. �e portrait style transfer of Shih et al. [2014] relights
images by transferring low-frequency color variations. �is leads
to be�er results (Fig. 8(e)) than the other two techniques. How-
ever, this technique relies on accurate alignment between the two
images, and errors in correspondence lead to artifacts when the
reference lighting is strongly directional. Our results (Fig. 8(f)) are
substantially be�er on these hard cases. �ey capture the reference
lighting more accurately and do not have local artifacts. �is is
an advantage of our regularized mass-transport formulation that
increases robustness to errors in alignment and challenging lighting
conditions.

Comparison with Ground Truth. We also compared our relight-
ing results to ground truth images. We used a multi-light dataset
for two subjects, captured in a light stage [Weyrich et al. 2006], to
render ground truth images under a set of reference illuminations.
2h�p://www3.cs.stonybrook.edu/∼cvl/content/portrait-relighting/prl.html

We then used images of Subject B, acquired under three di�erent
illuminations, to relight an input image of Subject A acquired un-
der a fourth illumination. We then compared our results with the
ground truth acquisition of Subject A under the three reference illu-
minations. As Figure 9 illustrates, our technique is able to capture
the angular distribution of the reference illumination well, without
any knowledge of the lighting in these images, and in spite of the
di�erences between the two subjects.

Comparison with Regularized Discrete OT. We compare our
approach to the regularized discrete optimal transport by Ferradans
et al. [2014]. �is technique introduces a relaxed mass-preserving
constraint to the linear-programming formulation that alleviates
visual artifacts caused by exact color matching (that is addressed
using stochastic sampling regularization in our method). To make
the linear programming solver tractable, they substantially reduce
the number of particles by clustering the data (K-means) in color
space. In the context of geometry-aware relighting, where position
p and normal n dimensions are added to the data space, this method
is less e�ective in capturing local color distributions and leads to
piecewise color artifacts (Fig. 10). Also, while their results capture
the global tone of lighting, they fail directional variations in lighting
(Fig. 10(a)), even when geometric dimensions are added to the data
(Fig. 10(b)). In contrast, our method faithfully captures the change
of the color distribution and generates visually plausible results
(Fig. 10(c)).

Recent work in fast regularized optimal transport [Solomon et al.
2015] makes use of Sinkhorn iterations [Cuturi 2013] and requires
heat kernel convolutions in the space of the couplings. Because
this space is 16-dimensional in the context of relighting (8D for
each the input and output spaces), this approach is not practical
for our application. In contrast, in our approximation using Sliced
Wasserstein Distance [Rabin et al. 2012], the computation cost is
only linear with the data dimensionality, and the 1D matching can
be parallelized in each iteration.

Moreover, experimentally, we show that the regularization by
stochastic sampling, not only reduces visual artifacts, but also in-
creases numerical stability of the results. We generate relighting
results multiple times with the proposed Algorithm 1, with di�erent
amount of stochastic regularization samples, and random coordinate
systems (rotations) F , as well as di�erent update rates τ . �e spe-
cial case of τ = 1 and without stochastic sampling, reproduces the
N -dimensional probability distribution transfer algorithm of Pitié
et al. [2005] (on color-position-normal space). Figure 11(a) shows
the average of the pixel value variances across di�erent trials. With
larger τ and less amount of regularization, the results exhibit larger
variance. We show the visual di�erences from errors of pixel values
under di�erent parameter se�ings on our online supplementary
material 2 . Proper stochastic sampling regularization and a small
update rate signi�cantly reduce visual artifacts. From Figure 11(a)
we observe that the variance reduces slowly with larger than 4×
regularization. �erefore in our implementation, we �x the number
of stochastic sampling to 4. We also show, in Figure 11(b), the con-
vergence properties of the Sliced Wasserstein Distance algorithm
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(a) Input (b) Reference (c) [Wen et al. 2003] (d) [Chen et al. 2011] (e) [Shih et al. 2014] (f) Our result

Fig. 8. Comparison with previous work. Input images (a), reference portraits (b), relighting using spherical harmonics-based radiance maps [Wen et al. 2003]
(c), with edge-preserving filters [Chen et al. 2011] (d), large-scale illumination transfer [Shih et al. 2014] (e), and our technique (f). Our technique is able
to produce robust relit results even when there are significant pose and/or identity variations and the lighting changes are very extreme (e.g., the red-blue
split lighting at the bo�om). Methods in (c) and (d) only allow manipulation inside the face region (i.e., a fi�ed morphable model mask region) with no
straightforward extension that can apply to a background region. For (e) and (f) we use identical background and identical (manually defined) portrait mask
within each row. Images courtesy: Flickr user Geo� Stearns ((a)-1), Flickr user rpavich ((b)-1), Flickr user Eva Rinaldi ((a)-2), Sabphoto/Adobe Stock ((a)-3, (b)-3),
Flickr user Rod Waddington ((a)-4).

w.r.t the number of iterations and update rate. In our implementa-
tion, we �x the number of iterations to 300 and τ = 0.2 to balance
the running time and visual quality of the results.

5.2 User Study
We conducted a quantitative evaluation of our technique, as well as
comparisons with previous state-of-the-art work [Shih et al. 2014],
via a user study that evaluates the perceptual quality of the lighting

transfer, and the visual realism of results. �e input dataset we
used is the Flickr dataset of headshot portraits, collected by Shih et
al. [2014], which contains 98 high-resolution casual portraits. Our
lighting reference dataset consists of 21 portrait photos spanning
ethnicity, gender, age, pose, expression and lighting. �e user study
shows that our technique signi�cantly outperforms prior art in both
lighting transfer quality and visual realism of the results.
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(a) Input

(b) Reference (c) Relit (Lab) (d) Relit (L) (e) Ground truth

Fig. 9. Relighting the input image (a, rendered using a light stage
dataset [Weyrich et al. 2006]) using the reference images (b, rendered under
three di�erent light setups) produces results (c, d) that reasonably approx-
imate the angular distribution of the lighting in the ground truth images
(e).

�ality of lighting transfer. In this questionnaire, we present
users with three images: input, reference and at random, either the
full-color transfer result generated by our algorithm with two-scale
manipulation Ofull

2 or the result generated by the method of Shih et
al. [2014] Ostyle. Both Ofull

2 and Ostyletransfer the skin tone and the
light color. All results are generated completely automatically. We
ask users to evaluate the quality of the lighting transfer (from the
input to the example) using a single choice out of 4 options:

(1) Convincing lighting transfer
(2) Acceptable lighting transfer
(3) Limited lighting transfer
(4) Poor lighting transfer

(a) Regularized OT (b) Regularized OT (c) Our result
result on color space result on color, position (color, position

and normal space and normal, 1-scale)

Fig. 10. Comparison with regularized OT [Ferradans et al. 2014]. Input:
Fig. 2(a); Reference: Fig. 2(b). (a) Regularized OT result on color space only;
(b) Regularized OT result on the joint space of color, position and normal(the
changes of position and normal are discarded a�er transport computation);
(c) Our result. Our result is be�er in both lighting transfer and visual quality.
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Fig. 11. The variance/deviation of resulting pixel values, by Algorithm 1,
w.r.t update rate (τ ), amount of stochastic sampling (ss), and number of
iterations. (a) Average of the resulting pixels’ variances from 10 trials (with
random F each time). Stochastic sampling and low update rate e�ectively
reduce the variance of results. (b) Average of resulting pixels’ deviations. The
final choice of τ (0.2) and number of iterations (300) is a balance between
result quality and running time. Please refer to the online supplementary
material 2 for a visual comparison of results by varying τ and stochastic
sampling.

Fig. 12. Statistics of user study responses for lighting transfer quality evalu-
ation. Our technique significantly outperforms previous work [Shih et al.
2014] in the quality of the lighting transfer.

In the 5,629 responses that we collected (Fig. 12), 71% of Ofull
2 are

rated 1 (Convincing) or 2 (Acceptable) (37% are rated 1), while 36%
of Ostyleare rated 1 or 2 (13% are rated 1).

Visual realism of the results. We evaluate the visual realism
of the relit results by comparing the results with unedited real
images. In each comparison, we present users with two images
simultaneously: (1) an unedited portrait (image from the input
dataset); and (2) a relit result, randomly picked from the following
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three options: Ostyle, Ofull
2 , and lightness transfer using our two-

scale approximation Olightness
2 ; image (1) and (2) are not necessarily

from the same subject. We ask users to decide which image looks
more realistic (allowing a tie). From the 2,400 comparisons that we
collected, users indicated that 31.7% of Ofull

2 images look more or as
realistic as the unedited images, while this number for Olightness

2 and
Ostyleare 40% and 11.5% respectively.

5.3 Applications

Relighting with non-photorealistic examples. �e robustness
of our technique to di�erences in the input and reference images
allows us to go beyond actual photographs, and to transfer illumi-
nation between real images and paintings. �is is demonstrated in
Figure 13.

Sketch-based relighting. We can even use a rough user sketch
of shadows and highlights to drive the relighting process (Fig. 13-
d,e). �is could be used as a “lighting design” tool to allow easy
exploration of di�erent illuminations.

Compositing with relighting. Compositing images can lead to
unnatural results when there are di�erences in their appearance.
While previous work has proposed ways to �x inconsistencies along
the boundary [Pérez et al. 2003] and di�erences in textures and
noise [Sunkavalli et al. 2010], lighting is still an issue. By using
our technique, users can eliminate lighting inconsistencies between
images and create photorealistic composites (Fig. 14).

5.4 Discussion
In some cases, the face might be occluded by hair or accessories with
widely di�erent textures. �is can lead to artifacts in the results.
We can handle such cases by using a user-de�ned mask (in lieu of
the face mask) to drive the transfer. Figure 15 illustrates how this
can lead to signi�cantly be�er results.

Matching a �at histogram to a histogram with strong peaks is
challenging with our formulation; this means that we are not able
to create sharp highlights, or sharp shadows when the input image
is largely �at. We are also limited in our ability to remove very dark
shadows; brightening such low SNR regions can render poor results
(Fig. 16), which is outside the scope of this work. Moreover, our
technique does not handle specularities well. Handling specularities
will likely require an explicit separation of specular highlights on
the face, and we leave this for future work.

In general, given an input face image, the reference portraits
should ideally have similar pose in order to provide su�cient sta-
tistics of pixel positions and normals. With the mass transport
formulation, our method is robust to a certain range of pose di�er-
ences. In Figure 17 we show an example of relighting photos taken
under di�erent views, using a single reference. We observe that as
the pose di�erence between the input and reference increases, the
results become less convincing.

We show in the online supplementary material 2 that applying
our technique to video data frame-by-frame generates reasonable re-
lighting results, with the exception of subtle temporal inconsistency

on the background. Such temporal �uctuations could be potentially
addressed by another line of work [Bonneel et al. 2015b].

Finally, not every reference illumination is compatible with every
input image. While our technique does a good transfer of illumi-
nation in many cases, some of the resulting outputs may not be
aesthetically pleasing because of these incompatibilities (e.g., Fig. 8,
bo�om).

6 CONCLUSIONS
We have presented an e�ective algorithm to transfer the lighting
from a reference portrait image onto another portrait image of a
di�erent subject possibly with a di�erent pose and expression. We
have introduced a new formulation of the relighting problem as
a mass-transport problem and shown how to regularize it using
stochastic sampling. Although our method is predominantly image-
based and relies on a global solver, it is able to successfully account
for local facial geometry to produce high-quality relit portraits as
demonstrated in our results.
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(a) Input (b) Reference (c) Our result (d) Reference (e) Our result

Fig. 13. Our technique can also be used with non-photorealistic images. We can transfer lighting from a real image to a painting (top, le�), between paintings
(top, right), and from a painting to a real portrait (bo�om, le�). In addition, our technique allows for an intuitive way to “design” lighting; users can scribble
shadows and bright regions on a photograph and use it as a reference to relight the image. Image courtesy: Flickr user Eva Rinaldi (portrait of Julie Andrews).

(a) Reference (b) Input (c) Composite (d) Relit output (e) Relit composite

Fig. 14. Face Swapping: when the eyes and nose in this input image (b) are Poisson-blended with the reference (a), the di�erence in the illumination gradient
causes unrealistic color shi�s (e.g., the unnatural cheek color). Our technique eliminates the lighting inconsistency (d), leading to a photorealistic result (e).
Images courtesy: Flickr user Geo� Stearns (input), Flickr user rpavich (reference).
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(a) Input and user mask (b) Reference and user mask

(c) Relit with face mask (d) Relit with user mask

Fig. 15. Input and reference portraits with overlaid user-specified masks
(a,b). Matching using the face mask (including forehead) causes artifacts
in the forehead region because of occlusions by the hat (c), but using the
user specified mask avoids these issues (d). Image courtesy: Flickr user Eva
Rinaldi (Input), Flickr user Loren Kerns (Reference).

(a) Input (b) Reference (c) Our result

Fig. 16. Relighting an input image with harsh lighting brightens the shad-
owed regions that are typically noisy. The low image quality in these regions
leads to poor results. Images courtesy: Sabphoto/Adobe Stock (input and
reference).
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APPENDIX: ADDING COLOR NOISE TO REGULARIZE
THE MAPPING
In this section, we explain how we regularize the mapping f̂c by
adding color noise to the data. Intuitively, we seek to smooth f̂c
which we could naively do by convolving it with a Gaussian for
instance. However, this would imply that we explicitly compute,
store, and process an 8D function, which is not practical. Instead,
in this section, we explain how to modify the input and reference
data so that solving the mass transport problem with the Sliced
Wasserstein algorithm directly generates a smooth function. While a
result independent of the solver being used would be more desirable,
the smoothness of the transport function is known to be a thorny
problem even in seemingly simple cases [Villani 2008, Chapter 12].

Our approach builds upon the observation that continuous func-
tions are smooth and that Gaussian convolution is an e�ective
way to smooth a function. We �rst consider the case of two 1D
datasets {Ui } and {Vi }, e.g., gray-scale images. It is known that
histogram transfer is achieved by computing the normalized his-
tograms HU and HV , and their corresponding cumulative distri-
bution functions CU (z) =

∫ z
−∞ HU and CV (z) =

∫ z
−∞ HV , and com-

posing them to get the transfer function τ = C−1
V ◦ CU . For τ to

be continuous, it is su�cient that CU and C−1
V are continuous. For

CU , a convolution by a Gaussian kernel Gσ is su�cient, i.e., we use
Gσ ⊗ CU instead of CU . And since CV is monotonically increas-
ing from 0 to 1, it is also su�cient to convolve CV by a Gaussian
kernel to ensure that CV is invertible and C−1

V is continuous. Last,
we observe that the integral commutes with the convolution, i.e.,
Gσ ⊗CU (z) = Gσ ⊗

∫ z
−∞ HU =

∫ z
−∞(Gσ ⊗HU ), which means that it is

su�cient to apply the convolution on the histograms. Further, since
the Sliced Wasserstein solver handles high-dimensional datasets by
repeatedly applying one-dimensional transfers, the above result on
an 1D dataset is su�cient to guarantee that convolving the input
data with a Gaussian kernel generates a continuous mapping.

In our context, the data are higher-dimensional because each data
point is represented by a (c, p,n) vector (Eq. 3). However, only the
colors may have a discontinuous distribution — the positions form
a uniform distribution over the image domain, and the normals are
smoothly distributed because faces are smooth shapes. Because of
this, convolving the positions and normals with a Gaussian has a
negligible e�ect since it amounts to applying a low-pass �lter to
band-limited data. In practice, we only smooth the color compo-
nents of the data. Because of the high dimensionality of the data,
explicitly representing the histograms to perform the convolutions
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Fig. 17. E�ect of pose di�erence between input and reference. We relight photos under di�erent views (top) using a single frontal-facing reference image
(bo�om, first). The results (bo�om) look best when the input and reference image have similar pose, and become less plausible at large angles.

is impractical. Instead, we use stochastic sampling, that is, we re-
place each color value by ns samples randomly generated from a
Gσ distribution centered on the original color; we keep the position
and normal unchanged. �is achieves our goal, that is, by replacing
each input and reference point (c, p,n) by ns stochastic samples
(c + ν , p,n) where ν is a random 3D vector drawn from Gaussian
distribution Gσ , we ensure that the solution of the mass-transport
problem (Eq. 3) directly generates a smooth mapping f̂c and we
do this only by manipulating discrete samples and never explicitly
represent an 8D function nor perform a 16D convolution.

In our prototype, we speed up the computation by using only
(ns − 1) stochastic samples and adding the original samples to the
set of samples used to compute the transport (SI in Algorithm 1).
�is simpli�es the computation because we do not need to maintain
a separate sample set for the original samples and the stochastic
samples. Formally, this amounts to sampling the distribution 1

ns
δ +

ns−1
ns

Gσ with δ the Dirac distribution. �is is a close approximation
of Gσ and has li�le in�uence on the results.

Received February 2007; revised March 2009; �nal version June 2009; ac-
cepted July 2009
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Fig. 18. Relighting results on a set of portrait images (shown on the diagonal in red boxes). The same original photograph is used as an input image (rows) and
as a reference image (columns), i.e., the image on (row a, col b) uses (a,a) as the input and (b,b) as the reference. As this figure shows, our technique is able to
transfer illumination between images, in spite of di�erences in pose, expression, gender, and ethnicity. Image courtesy: Flickr user Eva Rinaldi (1,1), Flickr user
Abhi (2,2), Ari Levinson (3,3), Flickr user DoD News (4,4).
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