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Fig. 1. From the input image (a), which exhibits a complex symmetry under perspective and with irregularities, our method automatically recovers the
dominant symmetry transformation (b), and its spatial support map (lower right). Recovering this symmetry transformation facilitates a plethora of image
editing applications. For example, we can analyse the transformation to compute its projective component and rectify the image (c). We can use it to facilitate
symmetry-aware image completion, as we demonstrate by expanding the original image to a canvas twice the size while preserving the structure of the
content (d). We can also use the transformation to propagate any edits we make along the symmetry (e). Source image: © Adobe Stock

Natural images often exhibit symmetries that should be taken into account
when editing them. In this paper we present Nautilus — a method for au-
tomatically identifying symmetric regions in an image along with their
corresponding symmetry transformations. We compute dense local simi-
larity symmetry transformations using a novel variant of the Generalised
PatchMatch algorithm that uses Metropolis-Hastings sampling. We combine
and re�ne these local symmetries using an extended Lucas-Kanade algorithm
to compute regional transformations and their spatial extents. Our approach
produces dense estimates of complex symmetries that are combinations of
translation, rotation, scale, and re�ection under perspective distortion. This
enables a number of automatic symmetry-aware image editing applications
including inpainting, recti�cation, beauti�cation, and segmentation, and we
demonstrate state-of-the-art applications for each of them.
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1 INTRODUCTION
Symmetries occur all around us; both natural organisms (like the am-
monite shown in Fig. 1) and man-made objects exhibit symmetries
in shape, texture, and form. These symmetries result in repetitive
patterns that play a vital role in the human perception of natural im-
ages. Symmetries have been studied extensively (see Liu et al. [2009]
for an overview), and it is important to properly account for them
in image manipulation applications like image inpainting [He and
Sun 2012; Huang et al. 2013], image resizing [Wu et al. 2010], image
segmentation [Teo et al. 2015], perspective recti�cation [Pritts et al.
2014], and planarisation of textured surfaces [Liu et al. 2015]. These
techniques discover symmetric repetitions of image patterns and
use them as high-level constraints for the underlying manipulation
algorithm. However, all these works detect only a small constrained
set of symmetries like fronto-parallel translational regularity [He
and Sun 2012] or translations under perspective [Huang et al. 2014;
Liu et al. 2015; Wu et al. 2010].

The goal of our work is to enable a general class of symmetry-
aware image editing operations. This requires us to address two
important aspects: �rst, we need to handle a broad range of complex
symmetries. Second, in order to edit an image, we need to isolate
the region of the image that an estimated symmetry applies to. To
this end, we present a method to estimate general symmetry trans-
formations that are combinations of translation, rotation, scale, and
re�ection, even under perspective distortions. Our approach is more
powerful than common symmetry detection schemes, since it is
not limited to a single type of symmetry (e.g. a translational grid).
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In addition, it is robust to partial occlusions, and automatically ex-
tracts both the pertinent symmetric transformation, and the region
of the image that exhibits that symmetry. To our knowledge, our
work is the �rst to address both these aspects. This allows us to esti-
mate types of complex symmetries that are not handled in previous
work, including the spiral symmetries shown in Fig. 1(a-b). Further,
it allows us to use these estimated symmetries to enable a wide
range of symmetry-aware image editing applications such as in-
painting, perspective recti�cation, beauti�cation, and segmentation
(Fig. 1(c-e)).

Our technique starts by detecting dense local symmetries that are
represented as similarity transformations. We do this by extending
the Generalized PatchMatch algorithm [Barnes et al. 2010] to search
for transformations that capture local image repetitions. This is a
large search space that is slow to evaluate but has a sparse set of
good solutions. We signi�cantly improve the convergence of the
search algorithm by using a sampling scheme based on Metropolis-
Hastings [1953] that avoids transformations that are likely to be
inaccurate. The similarity transformations found are accurate only
in local regions because of perspective distortions that the simi-
larity transformations cannot capture. In order to recover regional
symmetries, we use each of the local similarity transformations
as an initialization to a Lucas-Kanade-based iterative optimization
that estimates a free-form homography that best explains the lo-
cal similarity transformations. This optimization also estimates the
corresponding image region where each regional symmetry trans-
formation applies.

Contributions. Our work makes the following contributions:
1. Our method is the �rst approach that can estimate complex

symmetries that are combinations of repeated rotation, translation,
scaling and re�ection under perspective distortion.

2. We do this in a robust but e�cient manner by estimating
dense local symmetries using a novel variant of the Generalised
PatchMatch algorithm, and aggregating them with an extended
Lucas-Kanade re�nement.

3. We estimate multiple symmetries in an image and isolate the
region where each symmetry applies using a per-pixel support
measure that can detect imperfections and occlusions.

4. We present a new manually-annotated benchmark dataset for
evaluating complex symmetries that we demonstrate the quality of
our results on.

5. We present several symmetry-aware image editing applications
that improve on task-speci�c state-of-the-art techniques.

2 RELATED WORK
Symmetry Analysis. Liu et al. [2009] provide a thorough overview

of the work on symmetry detection in natural images. Kiryati et
al. [1998] estimate re�ection in undistorted images. Liu e al. [2004]
discover translational symmetries by using auto-correlation to vote
for parameters in transformation space. This idea was extended to
detect rotations under a�ne skew [Lee and Liu 2010] and re�ections
along curved paths [Lee and Liu 2012].

Later work has focused on using a�ne-invariant feature points to
detect regular repetitions under perspective [Tuytelaars et al. 2003],
re�ections under perspective [Cornelius et al. 2007], and re�ections

and rotations in undistorted images [Loy and Eklundh 2006]. Hays
et al. [2006], Park et al. [2009], and Liu et al. [2015] recover near-
regular translational lattices [Liu et al. 2004] from sparse features
and dense correspondences respectively.

These previous approaches focus on detecting speci�c classes of
symmetries. In contrast, our framework can detect general symme-
try transformations – that can be arbitrary combinations of trans-
lation, rotation, scale, and re�ection – under perspective or a�ne
distortion. Unlike previous techniques, which often detect sparse
feature points and then �t symmetries to these points, we search
for dense per-pixel symmetries and then group them into global
estimates. This allows us to search for a broader class of transforms
in a robust manner. While this approach can be computationally ex-
pensive, we show that it can be solved e�ciently by building on the
Generalised PatchMatch algorithm [Barnes et al. 2010]. In addition,
while some of the above approaches [Lee and Liu 2010; Loy and
Eklundh 2006] compute a region of support, this is typically in the
form of coarse estimates like the center and perimeter for rotational
symmetries and a lattice for translational symmetries. In contrast,
our dense approach recovers regional symmetry support on a per-
pixel basis, and thus is robust to occlusions and imperfections in
the symmetry.

Symmetry detection has also been addressed in the context of
3D data (see Mitra et al. [2012] for a comprehensive overview),
and techniques have been proposed to recover re�ections and rigid
transformations [Mitra et al. 2006] and combinations of rotation,
translation, and scale [Pauly et al. 2008]. Like them, we estimate local
symmetries which we then group into global symmetries with their
associated regions of impact. However, we do this under perspective
distortion which makes the global symmetry analysis challenging
because it “smears” the local transforms and precludes the use of
direct voting in the transformation space.

Applications of Symmetry Analysis. Symmetry detection has been
used to drive a number of analysis and editing tasks. Lobay and
Forsyth [2006] recover 3D shape from the distortions of repetitive
textures. Translational symmetries can be used to replace textures
in images [Liu et al. 2015, 2004] and remove regular occluders like
fences [Liu et al. 2008]. He et al. [2012] exploit fronto-parallel transla-
tional symmetries to improve inpainting. Huang et al. [2014] extend
this to out-of-plane symmetries by using vanishing lines to rectify
planes as a pre-processing step. Huang et al. [2013] show that more
general symmetries can improve inpainting results, but rely on the
user to specify them manually. Repeated patterns can also be uti-
lized for image recti�cation. Zhang et al. [2012] rely on a sparsity
model of texture to estimate translational symmetry and rectify an
image. However, their method is sensitive to background clutter and
requires the user to select representative parts in the image. Aiger
et al. [2012] detect congruent line segments while Pritts et al. [2014]
measure the change in scale of matching features. A key drawback
of these local measurements is that they are content dependent and
can be a�ected by noise. In our method the projective component
is removed just by analysing the homography estimated from lo-
cal symmetries over large image regions. Wu et al. [2010] detect
translational lattices and perform content-aware resizing of images
that does not distort the lattice. Kim et al. [2012] propose a texture
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Method L T G R A H F D
[Kiryati and Gofman 1998] •

[Tuytelaars et al. 2003] • • • •

[Loy and Eklundh 2006] • • •

[Hays et al. 2006] • • • •

[Cornelius et al. 2007] • • •

[Lee and Liu 2010] • •

[Lee and Liu 2012] • •

[Zhang et al. 2012] • • • •

[Pritts et al. 2014] • • • • • •

[Liu et al. 2015] • • • •

Our approach • • • • • • •

Table 1. Capabililties of previous symmetry detection methods: reflec-
tion (L), translation (T), glide reflection (G), rotation (R), under a�ine
skew (A), under perspective (H), under free-form deformation (F), dense
symmetry support mask (D).

perturbation technique that optimizes an auto-correlation-based
symmetry representation and use it for symmetry transfer, �ltering,
and deformation.

While these techniques develop application-speci�c symmetry
analysis methods, we show that our method can estimate general
symmetries that support a number of image editing tasks including
recti�cation, hole-�lling, beauti�cation, segmentation, etc.

3 TASK FORMULATION
Classical symmetry group theory [Liu et al. 2009] de�nes a sym-
metry as a global isomorphism. This de�nition is too restrictive to
apply to natural images which exhibit occlusions, geometric and
photometric inconsistencies, and other forms of noise. More recent
work has resolved this by robustly matching a global appearance
template [Hays et al. 2006; Liu et al. 2015; Park et al. 2009] or �tting
symmetries to sparse feature points [Pritts et al. 2014]. However,
image editing applications require dense symmetry estimates. This
in turn requires a local, point-wise notion of symmetry that can
adapt to local image content and still be computed robustly.

At the crux of our method is the de�nition of a symmetry as
a repeatable correspondence. While a regular correspondence is a
transformation T that when applied to a patch px results in a dis-
similarity d(px ,T ∗ px ) that is low, a repeatable correspondence is
one where the dissimilarity d(px ,T ∗T ∗px ) is also low, i.e., repeated
applications of the symmetry produces patches that are all similar
(see Figure 2).

We use the above de�nition to formulate and quantify the cost of a
symmetry at a point as follows: using the Sum of Squared Di�erences
(SSD) as a measure of patch-to-patch dissimilarity, we measure the
cost of a candidate transform T at patch px , centered at pixel x , as:

e(T ,px ) = max
(
SSD

(
px ,T (px )

)
, SSD

(
T (px ),T

2(px )
) )
. (1)

This de�nition allows us to compute dense symmetries using
patches centered at every pixel in an image. In practice, these patches
are small and not su�cient to recover perspective e�ects. Therefore,
we compute our symmetries in two stages. First, we compute dense
local symmetries that are restricted to similarity transformations

T T

Fig. 2. Symmetry as a repeatable transformation. A homography transfor-
mation T maps a part of the image to a similar part under perspective, as
does T 2. Source image: © Isabella Josie

and are evaluated at a patch level. Next, we fuse these local sym-
metries into regional symmetries that are modeled as homographies
to account for perspective e�ects. These symmetries map parts of
an image to themselves in such a way that the transformed regions
are similar to the original ones. This approach allows us to com-
pute globally applicable symmetries along with their dense spatial
support maps.

4 ALGORITHM
As illustrated in Figure 3, the core principle of our algorithm is
to discover patch-wise dense local symmetries in the image plane,
and then deduce regional out-of-plane symmetries from these. To
make the task of �nding dense correspondences computationally
tractable, we build upon the well-known Generalised PatchMatch
(GPM) [Barnes et al. 2010] algorithm, enriching it with a Metropolis-
Hastings sampling scheme to improve performance. We then cluster
these results and use them as initializations for hierarchical Lucas-
Kanade registration [Baker and Matthews 2004] combined with a
novel �t detection scheme to �nd homographic transformations
representing regional symmetries. The details of these steps are
described below.

4.1 Local Symmetry Search
In the �rst step of our algorithm, we search for dense repeatable
similarity correspondences that represent local symmetries. We
limit the search to only similarity transformations because any
usable patch size would be too small to infer perspective e�ects.
This e�ectively restricts the search to image-plane symmetries, and
we later extend these into non-fronto-parallel planes.

Our algorithm is built upon the k-NN GPM for generalised trans-
formations which we modify to minimize Equation 1. However our
search space is much sparser than usual, as there are far fewer sym-
metries than just correspondences. Using the random sampling step
in GPM to �nd them would thus produce unreasonable runtimes.
To make this search practical, we extend the GPM algorithm in two
principal ways. First, we parameterize the transformation in such
a way that the parameters can be interpreted as sets of points in
image space. Second, we take advantage of this parametrization to
alter the random search step to a guided variant that focuses on
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(a) (b) (c)

Tinit

(d)

Tconverged
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Fig. 3. High-level overview of our method. Given a natural image (a), we find dense repeatable similarity correspondences (b). We cluster these correspondences
into groups (c), and for each of the transformations represented by one of these clusters (d) (in this example, focusing on the outer rim of the window), we
refine the similarity transformation to compute a locally optimal homography symmetry (e). During the fi�ing step, we also extract a support map (f). Source
image: © Isabella Josie

exploring the more promising regions of the search space, resulting
in a much faster convergence.

4.1.1 Transformation Representation. A similarity transforma-
tion in 2D homogeneous coordinates may be expressed using four
parameters (a,b, c,d):

T =
©­«
a −b c
b a d
0 0 1

ª®¬ . (2)

A transformation of this form is fully determined by two correspon-
dences; that is to say, the system of equations

Tx = y
Ty = z,

(3)

uniquely determines the similarity transformation T for any three
points x ,y, z such that x , y ∧ y , z. Thus at any point x , given
a pair of points y, z there is a unique transformation T so that the
above equation holds, and conversely, we can easily compute unique
y, z given a transformation T .

We use these three points to measure the cost of the transfor-
mation and interpret each transformation as a triplet of points
in image space. We take advantage of this equivalence to quickly
check whether the transformation is valid or not (i.e., all the pro-
jected points are within the bounds of the image), detect how
di�erent two transformations are at a given point by measuring
the distance between the corresponding projected points (as in
dx (T1,T2) = | |T1x −T2x | |2 + | |T 2

1 x −T
2
2 x | |

2), as well as re-interpret
perturbations of the transformation in the random sampling step in
image space.

We can easily extend the space of transformations to include
re�ections by �ipping the signs of the values in the �rst column
of the symbolic matrix given. This alters the structure of Equation
(3) when determining the parameters (a,b, c,d). To handle this we
simply track whether a given transformation is re�ective or not.

Our implementation uses 7×7 patches in the search, and maintains
a queue of 10 best transformations for each pixel. The queue only
keeps transformations which are both su�ciently distinct from each
other as well as from the identity transformation. We consider two
transformations to be distinct if they either di�er in their re�ective

component (the sign of the determinant of T ), or if their mutual
distance, as de�ned above, is larger than 3 pixels.

4.1.2 Guided Random Sampling. The PatchMatch family of al-
gorithms computes a nearest neighbour �eld by alternating random
search and propagation steps. In the random search step, each image
pixel samples correspondences in an exponentially shrinking win-
dow around the current best match, approximating an exponential
distribution. The best matches found are transferred between neigh-
boring image pixels in the propogation step. This scheme works
well in translational PatchMatch, where the size of the search space
is roughly equal to the number of pixels in the image, and thus the
aggregate probability of �nding a good match for a region is high.
Generalised PatchMatch increases the search space combinatori-
ally by adding more dimensions to it, while the number of valid
solutions remains roughly the same. This results in the need for
more search iterations to achieve a comparable result quality. The
distance measure we use is even more discriminative than in the
GPM scenario (there are fewer repeatable correspondences than
regular correspondences in an image), and we would require even
more computation to achieve comparable results.

To overcome this, we propose a guided sampling approach. In
this, the new guesses are still selected randomly, but the sampling is
biased towards more promising parts of the search space through the
use of an oracle – a lightweight estimator that is roughly correlated
to the �nal cost.

The guided sampling algorithm works just like GPM, except the
transformation we are using is interpreted as the point triplet as
explained above. A random perturbation of the transformation can
be implemented as a random perturbation of two of the points. We
do this by keeping the point at which we are running the sampling,
x , �xed, and perturbing the other two points in a spatial window
around their current estimates. However, instead of drawing a uni-
form random sample from this window, we use the Metropolis-
Hastings algorithm [Metropolis et al. 1953] to draw a sample from a
probability distribution, px , that we design to better represent good
matches for the point, x , as:

px (y) ∝ ox (y), (4)
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where ox (·) is the oracle function at x . In our scenario the �nal
distance function is the patch-to-patch SSD. We therefore base the
oracle function on colour. For a candidate point y being sampled by
pixel x we de�ne it as:

ox (y) = exp
(
−||G(y) −G(x)| |2

)
, (5)

where G(x) is the colour at pixel x convolved with a Gaussian �lter,
with σ = 3 pixels (half patch width). This gives a rough estimate
of the patch distance around these two pixels which is rotation-
invariant, re�ection-invariant and to a degree also scale-invariant.
This convolution is pre-computed so evaluating this function only
requires sampling an image twice, and is thus very fast.

We constrain px (·) so that it is non-zero only within an exponen-
tially shrinking spatial window around the current best match (as
is done in GPM). Thus we spend more time sampling the parts of
the search space we consider to be more promising, while staying
spatially close to known good matches from GPM.

0 200 400
4
5
6
7
8
9

10
11

GPM recon. GPM+MH recon. Mean Square Error

GPM
GPM+MH

x 10

Fig. 4. Comparison between standard GPM and our Metropolis-Hastings
sampling scheme (GPM+MH). The nearest neigbour fields produced by our
method leads to be�er reconstructions (le�) and lower image reconstruction
errors (right) a�er the same processing time. Source image: © Isabella Josie

In practice, this guided-sampling variant of GPM produces sim-
ilar results in terms of average patch-wise SSD, but substantially
outperforms standard GPM in terms of reconstruction error (i.e.
the di�erence between the image reconstructed using the retrieved
nearest-neighbour �eld vs. the original image, as shown in Figure 4).
The reason for this is that the guided search �nds more meaning-
ful symmetries which are propagated over larger areas, while the
unguided variant diverges into pixel-wise local minima. This also
means that guided search performs better on more structured images
which have a sparser solution space, while in unstructured images
where the error landscape is much more forgiving, performance is
comparable.

Finally, �at, non-textured patches are much more tolerant to their
correspondences, and as a result extensively searching for their best
matches does not contribute to �nding meaningful symmetries in
the structured parts of the image. Therefor, we perform the random
sampling step only in patches that are salient, as determined by
the measure used by Liu et al. [2015]. Non-salient patches still con-
tribute by propagating correspondences, but we focus the symmetry
exploration e�ort to the structured parts of the image.

4.1.3 Pre-clustering. While the local symmetries computed by
our method capture local repetitions well, we are interested in sym-
metries that are supported over large areas of the image. The obvious

way to do this is to cluster the detected point-based symmetries
over larger regions. Since we are already using a variant of GPM to
�nd these point symmetries, we take advantage of some properties
of this algorithm to directly generate a preliminary clustering.

GPM creates new transformations only in the random sampling
step. During the propagation step, existing transformations are
propagated from one pixel to another without any changes. We take
advantage of this property by assigning a unique label to each new
generated transformation, which is then propagated along with the
transformation itself. At the conclusion of the local symmetry search
step, we then have a set of pre-clustered symmetry transformation
labels, which we use in further steps of our algorithm.

This pre-clustering allows us to coalesce regions with identical
transformations and consider them in aggregate. We are also able
to discard transformations with low salient spatial support (less
than 10 pixels in our implementation), further saving computational
e�ort.

4.2 Global Homography Search
The local symmetry search step estimates a set of similarity trans-
formations that capture the symmetries in small local regions of the
image. We limit the search to similarity transformations because
it is challenging to recover perspective e�ects from small image
patches. In the next step, we re�ne these similarity transformations
to recover regional symmetries – encoded as homographies for han-
dling perspective distortions – that capture symmetries over large
image regions. For this, we �rst de�ne the notion of a symmetry
that “explains” a pixel, and then build a gradient-descent algorithm
on top of it.

4.2.1 Spatial Support Estimation. Given a candidate symmetry
transformationT , each patch p may be isomorphically mapped onto
a counterpart p′ = T ∗ p within the image. We could thus measure
the dissimilarity between p and p′ to evaluate how wellT aligns the
two patches. However this measure highly depends on the patch
content, e.g, it can be very high when a highly structured patch is
even slightly misaligned, but low when a non-structured patch is
poorly aligned. Thus, we found it to be an inappropriate measure of
the quality of a transformation.

We follow the intuition that if two same-frequency image-domain
signals are correlated, the energy of their di�erence will be lower
than the energy of either of them. While this intuition breaks down
when the frequency content of the two signals di�ers, we can iso-
late this variable by decomposing the images into a Laplacian Pyra-
mid [Burt and Adelson 1983]. Each level of the pyramid then rep-
resents a separate frequency band on which we can consider the
signals to be comparable.

Given input image Io and the transformed image IT , we con-
struct their respective Laplacian pyramids, Po and PT , and measure
alignment con�dence, c(x , l), at pyramid level l at patch px as:

c(x , l) = 1 −min(1,
| |P lo (px ) − P

l
T (px )| |

max(| |P lo (px )| |, | |P lT (px )| |) + ϵ
), (6)

where ϵ is a small constant (10−7) to prevent division by zero. This
yields a similarity measure in the range [0, 1] for each pixel at ev-
ery scale. To consider a patch well-aligned, we require that it be
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well-aligned at all scales. To ensure this, we aggregate alignment
con�dence across scales as follows:

c(x) = max
l ∈{0..lmax }

(
min

(
sl , min

j ∈{l ..lmax }

(
c(px , j)

) ))
,

where sl = 2−l . (7)

Here l = 0 is the �nest scale and l = lmax the coarsest. sl thus corre-
sponds to the scale factor of the pyramid level, and the aggregated
alignment con�dence approximates the reciprocal of the smallest
scale value up to which the given pixel aligns well. This aggregated
aligned con�dence captures the regions of the images that support
a particular symmetry transformation, and we refer to it as a spatial
support map.

As a side e�ect, the support map may be thresholded at sl to gain
a binary support mask of a �t up to a certain scale level. This allows
e�ective handling of irregular images, because the user can just
linearly scale the weight map based on the desired tolerance.

4.2.2 Fi�ing homographies. Each similarity transformation pro-
duced by our local symmetry search step (Sec. 4.1) is now associated
with a spatial support map that indicates the image regions that it ap-
plies to. We then use the Lucas-Kanade registration algorithm [Baker
and Matthews 2004] to re�ne each local similarity transformation
into a more general homography transformation. This algorithm
uses gradient descent to �nd a homography that is close to the ini-
tial similarity, while minimising the di�erence between the original
and transformed images. The locality of this search in the transfor-
mation space is a desired behaviour in our context, as a globally
optimal solution is always trivially an identity transform.

In order to make the descent robust to image noise, we use the
Levenberg-Marquardt Inverse Compositional Lucas-Kanade algo-
rithm (Sec. 4.5 in [Baker and Matthews 2004]). Also, to make the
descent robust to occlusions and distractors, we take advantage
of the previously de�ned spatial support map c(x) to focus on the
regions that we believe the current symmetry applies to. We do this
by weighting the per-pixel Hessians and gradients (Eqns. 92 and 93
in [Baker and Matthews 2004]), and the image error by the spatial
support map. Each time the transformation is re�ned, we recompute
the spatial support map using Equation. 7.

4.2.3 Learning to filter symmetries. The above algorithm pro-
duces the best global homography estimates for all detected local
symmetries, some of which are correct and some are not. In order
to determine the homographies that represent meaningful symme-
tries, we use a Support Vector Machine classi�er [Cortes and Vapnik
1995] that we train using manually annotated reasonable and unrea-
sonable symmetries on a dataset of 32 images (for a total of 21744
labeled transformations).

We �rst compute a goodness weight for every homography that
evaluates how well it explains the image by summing the spatial
support map across the entire image, i.e.,w(x) =

∑
x c(x). The input

features to the classi�er are: 1) the goodness weight of the candi-
date normalized by size of the image, 2) percentile of said weight
within the candidate set (i.e., compared to all the other homogra-
phies estimated for this image), 3) relative density of the weight
value within the candidate set as measured by kernel density esti-
mation (i.e., how many of the homographies for this image have a

(a) Input (b) Local similarity (c) Final homography

Fig. 5. A before-and-a�er comparison of the homography fi�ing. Given an
input image (a), our local similarity search computes a coarse symmetry
transformation (b), that is refined by the homography fi�ing (c) to produce
transformed images that are be�er aligned with the input. Source images:
© Adobe Stock

similar weight value), 4) size of the spatial support region (estimated
by thresholding the support map using Otsu’s method [Otsu 1979]),
and 5) the di�erence between the initial weight of the candidate
(from the local search step) and its converged weight (after �tting
the homography). We use RBF kernels for the SVM and train using
hard negative mining to improve performance. The SVM was eval-
uated using a training/test split of 80%/20% and tuned to achieve
a testing performance of 91.17% precision and 41.33% recall. We
opted for higher precision and lower recall to ensure that the output
symmetries are more likely to be meaningful.

5 RESULTS
For a �rst-approximation of veri�cation of correctness, we ran our
algorithm on a synthetically generated dataset, manually comparing
the output to the known ground truth. This allowed us to test, in
isolation, the robustness of our algorithm to high-frequency noise,
low-frequency random distortion, as well as perspective distortion.
We have found it to be surprisingly robust to both noise and distor-
tion, and satisfactorily resilient to perspective for all of the examined
symmetry types. These results are included in the supplemental
material.

We further sought to evaluate the quality of the returned results
on natural images, such as one might use in editing applications.
Evaluating quality of symmetry detection is a very challenging prob-
lem; indeed, it seems to be at least as challenging as the detection
itself. The state-of-art work in this area is the 2013 symmetry de-
tection competition [Liu et al. 2013], but we found its methodology
ill-suited for evaluation of complex symmetries. The evaluation
there is special-cased for individual symmetry types, and ground-
truth labels are established by perceptual consensus rather than
pixel-wise �t, which is insu�cient for our image editing applica-
tions. Likewise, the reference algorithms there do not provide output
that can be easily compared with a homography transformation
matrix; for example, for re�ections, the evaluation is by design un-
concerned with the extent and form of the symmetry perpendicular
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to the axis, and for rotations no information on the angle thereof is
considered.

In light of these problems, we decided to design our own bench-
mark along with an evaluation algorithm, which is included and
described in the supplemental material. We selected a set of 30
photographs which together exhibit a broad mixture of various
symmetries. For the purposes of the evaluation, we interpret a sym-
metry as an isomorphic mapping between the feature points of
the image. We have manually annotated the selected images with
feature points and de�ned the ground-truth primitive symmetries,
out of which composite symmetries such as translational grids are
composed. We then assign each returned result a �t value between 0
and 1 based on how closely it matches the most similar ground-truth
transformation.

Based on this evaluation, we found that our method returns an
average of 4.23 symmetries per image (σ 2 = 2.34) with an average
quality of 0.632 (σ 2 = 0.39). Full breakdown by image is shown in
the supplemental material. The examples that have proven chal-
lenging to our method can be found in Section 7 where we discuss
our limitations. We further present a sampling of other interesting
results in Figure 7.

In Figure 6, we compare our estimation of re�ection and rotation
symmetries against the method of Loy and Eklundh [2006] which is
the baseline algorithm for these symmetries in [Liu et al. 2013]. As
can be seen here, our technique is able to match the performance of
a state-of-the-art technique developed speci�cally for rotations and
re�ections. In addition, we are able to densely predict the spatial
extent of the symmetries; previous techniques, including Loy and
Eklundh, which rely on sparse feature points, cannot do so.

In practical terms, the applications shown in this paper also
demonstrate that the detected symmetries are accurate enough
to support a variety of image editing methods. In fact, the results
obtained by our method work as well as manually annotated sym-
metries would, and provide comparable or better results than either
competing techniques, or symmetry-agnostic ones.

Our unoptimized prototype has been implemented in a combina-
tion of C++ and MATLAB. Runtimes currently span tens of minutes
per a megapixel image, with the majority of this being taken up by
the Lucas-Kanade iteration. While processing an individual symme-
try is fast and takes a minute at most, a great number of symmetries
has to be processed in total. We hope to remove this bottleneck
in the future by on-line clustering of candidate local symmetries
during the course of the global symmetry estimation.

6 APPLICATIONS
To demonstrate the practical utility and versatility of our method,
we have implemented several image editing applications where the
knowledge of the symmetric transformation and its spatial sup-
port simpli�es the task or removes the need for manual input. We
compare our results on each of these applications to their current
state-of-the-art methods, and demonstrate that our general frame-
work is able to replicate and improve upon their quality.

6.1 Image Rectification
Previous techniques for removing perspective distortion and shear
from a photograph require the manual speci�cation or detection of

(a) Input (b) Loy [2006] (c) Our result

Fig. 6. We compare against the reflection and rotation detection method of
Loy and Eklundh [2006] (reflection axis and center of rotation marked in red).
As can be seen here, we closely match their performance while retaining
the general nature of our method. In addition, we can predict which regions
of the image satisfy this symmetry, which their method does not. Source
credit: © Adobe Stock (top), CC-BY Cat Burston @ Flickr (bo�om)

original Aiger TILT Pritts

FAILED

our approach

Fig. 8. Rectification of images captured under perspective (a). We compare
Aiger et al. [2012] (b), Zhang et al. [2012] (c), and Pri�s et al. [2014] (d)
against our approach (e, used symmetry inset). Source images: © Isabella
Josie.

corresponding points, right angles, vanishing lines [Liebowitz and
Zisserman 1998], congruent line segments [Aiger et al. 2012], global
measurements such as the rank of the image matrix [Zhang et al.
2012] or change of scale [Pritts et al. 2014].

In our solution we rectify the image using one of our detected
global symmetry homographies, H. The key is to assume that H
has the following structure:

H = PSP−1, (8)

where

P =

1 x1 0
0 x2 0
x3 x4 1

 , S =

x5 x6 x7
x8 x9 x10
0 0 1

 . (9)

P is the pure perspective part of H and S is an in-plane symmetry
which we assume to be a general similarity transform, i.e., uniform
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Fig. 7. A selection of symmetries detected by our method; for each example from le� to right: the input image, the input image transformed according
the detected symmetry, spatial support map of the detected symmetry, and di�erence image produced by subtracting the original input image from its
transformed counterpart. In this selection, our method is able to estimate rotations (e.g., row 1, row 2 right, row 5 right), translations (row 3, row 6), and
combinations of scale and rotations like the Nautilus (row 3 right, row 5 right). Many of these are captured under perspective that our technique is able to
account for. Source images: © Adobe Stock

scale, rotation, and translation. In addition, we assume that this sim-
ilarity transformation has a non-zero rotational component, failing
which the decomposition can become under-constrained.

To obtain the recti�ed image we need to estimate P and then
apply its inverse. To do that we formulate the task as a non-linear
optimization problem, with the following objective function:

E(x) = λ
��������(x5x8) − (

−x9
x6

)��������2 + 4∑
i=1
| |Hvi − PSP−1vi | |2 (10)

The �rst term of (10) enforces S to be as close to a similarity as
possible, and the second term ensures that the decomposition is
close to the input homography H (measured using the re-projection
error of the four image corners v1...4).

Minimizing E(x) is feasible only when the rotation angle of the
underlying similarity is away from 0◦ and 180◦. This can be veri�ed
by �nding the closest similarity S′ to the input homography H and
computing α = arctan(x8/x5).When α ∈ (10◦, 170◦) we initialize P
with the identity matrix, S = S′ and then run a non-linear optimiza-
tion using the L-BFGS algorithm [Liu and Nocedal 1989; Nocedal
1980] where exact partial derivatives of E(x) are computed using

dual numbers [Piponi 2004]. To avoid getting stuck in an inappro-
priate local minima, we allow for greater freedom at the beginning
of the optimization. We start with λ = 1 to let the algorithm explore
a fruitful direction, and gradually increase it until it reaches λ = 109
which allows us to strictly enforce S to be a similarity transform. To
ensure that the resulting decomposition is meaningful we use the
value of E(x). In practice, we observed E(x) < 1 indicates a good
recti�cation (see Fig. 8).

6.2 Image Beautification
Recently, Dekel et al. [2015] presented an algorithm to detect and
enhance/suppresses non-local irregularities in input photographs.
While this approach produces impressive results on many images,
it exhibits bias when beautifying radially symmetric patterns, warp-
ing them into octagonal rather than circular forms. This bias is due
to the translational model used to detect and represent geometric
variations. We can extend their method using our more general
high-level symmetries. We do this by replacing the single image
input into Dekel et al.’s algorithm with an extended image set that
contains images transformed according to the dominant symmetries
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(a) Input (b) Dekel et al. [2015] (c) Our result
Fig. 9. Image beautification with detected symmetries. Input image (a),
result using Dekel et al. [2015] (b, note the distortion of the shape and
unpleasing contraction of thin features), and beautification obtained using
Dekel et al.’s approach when the original image is extended by a set of our
detected rotational symmetries (c). Source images: © Adobe Stock (top),
© Isabella Josie (bo�om).

(a) (b) (c)

Fig. 10. Image completion using detected symmetries under perspective.
We manipulate the input images (top) to create results (middle) where
the edits include retargeting/extending images (le�), removing objects un-
der perspective (middle) and even di�icult tasks like removing occluders
(right, symmetry-unaware result from Photoshop Content-Aware Fill in the
top right inset). We also show the symmetries detected by our algorithm
(bo�om), with the highlighted ones being used for the completion. Source
images: (a), (b) © Adobe Stock, (c) CC-BY Simon Cocks @ Flickr.

we found. Their algorithm can then sample transformed patches
from symmetric locations in the nearest neighbor step. As demon-
strated in Figure 9, this leads to results that preserve the global
shape as well as thin structures of the input image. As an additional
extension, the input images can be pre-recti�ed as described in
Section 6.1 perform beauti�cation under perspective distortion.

6.3 Image Completion and Editing
Patch-based image completion techniques typically cannot preserve
higher-order symmetry relations and instead rely on the user to
specify guiding constraints [Barnes et al. 2009; Huang et al. 2013].
Generalized PatchMatch was used in [Darabi et al. 2012] to adapt
structural changes locally, however, this approach can be applied
only when the region that needs to be �lled is relatively small. He
and Sun [2012] improved image completion using fronto-parallel
translational symmetries, and Huang et al. [2014] detected translated

planar patterns under perspective and used it to guide synthesis.
Nevertheless, this approach is limited only to translational symme-
try.

Thanks to our approach’s ability to detect complex symmetries
under perspective, we have a powerful tool to impose symmetry con-
straints in these tasks. We use a PhotoMontage-based method [Agar-
wala et al. 2004] to demonstrate image completion using our detected
symmetries. In particular, we transform an input image with each
detected symmetry transformation to create a transformed image
stack. We also transform each symmetry transformation’s spatial
support map to create a corresponding spatial support stack. At
each pixel of the edited image, we can pick samples from one of
the transformed images and the corresponding transformed spa-
tial support map indicates whether that sample is valid. We use
graph cuts [Boykov et al. 2001] to compute a label map that indi-
cates which transformed image each edited image pixel pulls its
value from. The unary term is set according to our transformed
spatial support maps, and the binary term is identical to that used
in PhotoMontage. We combine the images using the computed label
map and use Poisson blending [Pérez et al. 2003] to improve the
merging. As demonstrated in Figure 10, this framework can be used
to retarget images as well as to edit out some regions. The resulting
image preserves the global structure of complex symmetries even in
the presence of perspective e�ects. Most importantly, this technique
is almost completely automatic, requiring the user to only specify
which symmetry to use for the task.

For less regular scenarios where running synthesis is necessary,
the transformation matrix and �t map may be used to deduce in-
put constraints for an approach like Tranfsormation-Guided Image
Completion [Huang et al. 2013].

Finally, we can use the knowledge of symmetries to propagate
edits made by the user along these symmetries, as seen in Figure 11.
This is trivially achieved by allowing the user to apply one of the de-
tected transformations, or multiplies thereof, to create transformed
copies of the user’s input which are then transparently fed into any
editing process of choice.

6.4 Symmetry Segmentation
Symmetry detection can provide valuable prior information about
the relationship between regions in an image and used to guide
a segmentation algorithm. Previous approaches to image segmen-
tation based on symmetries were either limited to a certain type
of symmetry such as re�ection [Sun and Bhanu 2012] or required
manual annotation of speci�c symmetry locations [Teo et al. 2015].
Using our approach we can detect symmetries with corresponding
support maps (see Fig. 7). This information can be used as a prior to
constrain the global optimization process to automatically segment
symmetric objects within the image. As a demonstration of this ca-
pability we implemented a simple graph cut based approach which
uses the energy minimization framework developed by Boykov and
Funka-Lea [2006] to perform image segmentation. We replaced the
regional data term (originally based on appearance) with the spatial
support maps of our detected symmetries and then run their graph
cut optimization. The algorithm can either segment a symmetric
object or the non-symmetric part of the input image based on the
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Fig. 11. Edit propagation with detected mirror symmetry. The user draws
scribbles (blue circles with white outline on the le�) which are used to
change the color of selected segments on the le� wing. Detected mirror
symmetry is applied to propagate the user scribbles to the right wing (blue
circles with yellow outline), and finally the color from individual scribbles is
propagated to fill the segments (right). Source image: © Adobe Stock

(c) Our result(b) GrabCut(a) Input

Fig. 12. Image segmentation with symmetry priors. Input image with inital
segmentation rectangle for the GrabCut method [Rother et al. 2004] (a), the
results from GrabCut su�er from obvious asymmetries (b), and the result
of graph cut based segmentation [Boykov and Funka-Lea 2006] where our
detected rotational symmetry (inset) is used as a prior for data term (c). The
foreground label is assigned to extract the symmetric part (top) and the
non-symmetric part (bo�om). Source images: PSU symmetry dataset [Liu
et al. 2013] (top), © Adobe Stock (bo�om).

user’s requirements. Figure 12 compares our results with the Grab-
Cut algorithm [Rother et al. 2004] which requires a speci�cation of
an initial rectangle and then iteratively optimizes the appearance
model. Our symmetry prior can signi�cantly improve the result
without additional manual intervention.

7 LIMITATIONS AND FUTURE WORK
While our method has been demonstrated to �nd high-quality re-
sults for many practical examples, there are scenarios which we
found to be problematic. In some cases, the symmetry cannot be
described by a planar homography, due to the original symmetric
pattern being either non-planar (Fig. 13a), or irregular (Fig. 13b). Our
method then �nds a best planar �t, but this is only approximate �t.
This can potentially be addressed by introducing local deviations to
the planar transform representation, similar to work on near-regular
translational symmetries [Hays et al. 2006; Liu et al. 2015; Park et al.
2009].

(a) (c)(b)

Fig. 13. Limitations. The dome of the mosque (a) is spherical and is not
well captured by even the best planar fit. In the case of a Nautilus shell (b)
our approach successfully detects the curve of the spiral, but is unable to
exactly match the cell sections, as they are not perfectly regular. Illumination
gradients in the window (c) generate spurious high-error areas, which result
in "holes" in the spatial support map. Source images: (a) CC-BY-SA Adam
Jones @ Flickr, (b) © Adobe Stock, (c) CC-BY Cat Burston @ Flickr.

Images with illumination gradients (Fig. 13c) may cause the Lucas-
Kanade registration to converge to a perceptually non-optimal state,
and cause "holes" in our con�dence map. Gain and bias compensa-
tion could help remove these artifacts [Barnes et al. 2010].

Our registration step completely relies on the dense local symme-
tries computed with PatchMatch. However it is impossible to know
if PatchMatch converged and found all symmetries in the image.
Because of this, we run the search for a �xed number of iterations,
but this still does not fully resolve the problem. Symmetries that
were overlooked by the PatchMatch step will not be recovered by
the later steps. Interleaving the local symmetry search with the
region symmetry �nding might resolve this and we leave this for
future research.

Our technique is not designed to discover the primitive symme-
tries in an image. As a result, our method might discover composite
transformations, for example, a rotation with twice the correct pe-
riod, or a translation in both x and y-axes. We directly use these
symmetries in our editing applications without attempting to de-
compose them into primitive transformations. Recovering the basic
transformations is a challenging research problem that may help
image understanding or reveal additional repetitions not detected
by our algorithm. We leave such analysis for future work.

While the re�nement of a single candidate transformation is
relatively fast – about 60 seconds on average – the patch search
produces an enormous number of candidates, numbering sometimes
into the hundreds, that need to be examined. This may result in
impractical runtimes. We hope that a better method for clustering
patch search results – a di�cult problem in its own right – could
help reduce runtimes by reducing the number of initial candidates.
Furthermore, a more robust method of classifying symmetries from
non-symmetries would allow discarding candidates earlier in the
process, providing additional speed-up.

8 CONCLUSION
We have presented an approach to detect generalized symmetry
transformations in images captured under perspective. To our knowl-
edge, our work is the �rst approach which enables completely au-
tomatic estimation of complex symmetry transformations – that
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are combinations of rotations, translations and re�ections – under
perspective distortion. Our technique can also cope with partial oc-
clusion and estimate regions of interest for detected symmetries. We
have demonstrated the practical utility of our technique in various
applications achieving results which were previously not feasible
without using additional user intervention, and improving upon
speci�c state-of-the-art methods. These promising results lead us to
believe that our method has the potential to become a basic building
block for various image manipulation algorithms and can help to
automate tasks which were previously tractable only with extensive
manual work.
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