
Deep Image Harmonization

Yi-Hsuan Tsai1 Xiaohui Shen2 Zhe Lin2 Kalyan Sunkavalli2 Xin Lu2 Ming-Hsuan Yang1

1University of California, Merced 2Adobe Research
1{ytsai2, mhyang}@ucmerced.edu 2{xshen, zlin, sunkaval, xinl}@adobe.com

Abstract

Compositing is one of the most common operations in
photo editing. To generate realistic composites, the appear-
ances of foreground and background need to be adjusted
to make them compatible. Previous approaches to harmo-
nize composites have focused on learning statistical rela-
tionships between hand-crafted appearance features of the
foreground and background, which is unreliable especially
when the contents in the two layers are vastly different. In
this work, we propose an end-to-end deep convolutional
neural network for image harmonization, which can cap-
ture both the context and semantic information of the com-
posite images during harmonization. We also introduce an
efficient way to collect large-scale and high-quality train-
ing data that can facilitate the training process. Experi-
ments on the synthesized dataset and real composite images
show that the proposed network outperforms previous state-
of- the-art methods.

1. Introduction

Compositing is one of the most common operations in
image editing. To generate a composite image, a foreground
region in one image is extracted and combined with the
background of another image. However, the appearances
of the extracted foreground region may not be consistent
with the new background, making the composite image un-
realistic. Therefore, it is essential to adjust the appearances
of the foreground region to make it compatible with the new
background (Figure 1). Previous techniques improve the re-
alism of composite images by transferring statistics of hand-
crafted features, including color [13, 28] and texture [25],
between the foreground and background regions. However,
these techniques do not take the contents of the compos-
ite images into account, leading to unreliable results when
appearances of the foreground and background regions are
vastly different.

In this work, we propose a learning-based method by
training an end-to-end deep convolutional neural network

Composite image Xue [28]

Zhu [32] Our harmonization result
Figure 1. Our method can adjust the appearances of the compos-
ite foreground to make it compatible with the background region.
Given a composite image, we show the harmonized images gener-
ated by [28], [32] and our deep harmonization network.

(CNN) for image harmonization, which can capture both
the context and semantic information of the composite im-
ages during harmonization. Given a composite image and
a foreground mask as the input, our model directly outputs
a harmonized image, where the contents are the same as
the input but with adjusted appearances on the foreground
region. Context information has been utilized in several im-
age editing tasks, such as image enhancement [6, 29], image
editing [27] and image inpainting [20]. For image harmo-
nization, it is critical to understand what it looks like in the
surrounding background region near the foreground region.
Hence foreground appearances can be adjusted accordingly
to generate a realistic composite image. Toward this end,
we train a deep CNN model that consists of an encoder to
capture the context of the input image and a decoder to re-
construct the harmonized image using the learned represen-
tations from the encoder.

In addition, semantic information is of great importance
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to improve image harmonization. For instance, if we know
the foreground region to be harmonized is a sky, it is nat-
ural to adjust the appearance and color to be blended with
the surrounding contents, instead of making the sky green
or yellow. However, the above-mentioned encoder-decoder
does not explicitly model semantic information without the
supervision of high-level semantic labels. Hence, we in-
corporate another decoder to provide scene parsing of the
input image, while sharing the same encoder for learning
feature representations. A joint training scheme is adopted
to propagate the semantic information to the harmonization
decoder. With such semantic guidance, the harmonization
process not only captures the image context but also under-
stands semantic cues to better adjust the foreground region.

Training an end-to-end deep CNN requires a large-scale
training set including various and high-quality samples.
However, unlike other image editing tasks such as im-
age colorization [30] and inpainting [20] where unlimited
amount of training data can be easily generated, it is rela-
tively difficult to collect a large-scale training set for image
harmonization, as generating composite images and ground
truth harmonized output requires professional editing skills
and a considerable amount of time. To solve this problem,
we develop a training data generation method that can syn-
thesize large-scale and high-quality training pairs, which fa-
cilitates the learning process.

To evaluate the proposed algorithm, we conduct exten-
sive experiments on synthesized and real composite images.
We first quantitatively compare our method with different
settings to other existing approaches for image harmoniza-
tion on our synthesized dataset, where the ground truth im-
ages are provided. We then perform a user study on real
composite images and show that our model trained on the
synthesized dataset performs favorably in real cases.

The contributions of this work are as follows. First, to
the best of our knowledge, this is the first attempt to have
an end-to-end learning approach for image harmonization.
Second, we demonstrate that our joint CNN model can ef-
fectively capture context and semantic information, and can
be efficiently trained for both the harmonization and scene
parsing tasks. Third, an efficient method to collect large-
scale and high-quality training images is developed to facil-
itate the learning process for image harmonization.

2. Related Work

Our goal is to harmonize a composite image by adjusting
its foreground appearances while keeping the same back-
ground region. In this section, we discuss existing meth-
ods closely related to this setting. In addition, the proposed
method adopts a learning-based framework and a joint train-
ing scheme. Hence recent image editing methods within
this scope are also discussed.

Image Harmonization. Generating realistic composite im-
ages requires a good match for both the appearances and
contents between foreground and background regions. Ex-
isting methods use color and tone matching techniques to
ensure consistent appearances, such as transferring global
statistics [24, 23], applying gradient domain methods [21,
26], matching multi-scale statistics [25] or utilizing seman-
tic information [27]. While these methods directly match
appearances to generate realistic composite images, realism
of the image is not considered. Lalonde and Efros [13] pre-
dict the realism of photos by learning color statistics from
natural images and use these statistics to adjust foreground
appearances to improve the chromatic compatibility. On
the other hand, a data-driven method [10] is developed to
improve the realism of computer-generated images by re-
trieving a set of real images with similar global layouts for
transferring appearances.

In addition, realism of the image has been studied and
used to improve the harmonization results. Xue et al. [28]
perform human subject experiments to identify most sig-
nificant statistical measures that determine the realism of
composite images and adjust foreground appearances ac-
cordingly. Recently, Zhu et al. [32] learn a CNN model
to predict the realism of a composite image and incorpo-
rate the realism score into a color optimization function for
appearance adjustment on the foreground region. Different
from the above-mentioned methods, our end-to-end CNN
model directly learn from pairs of a composite image as the
input and a ground truth image, which ensures the realism
of the output results.

Learning-based Image Editing. Recently, neural network
based methods for image editing tasks such as image col-
orization [7, 14, 30], inpainting [20] and filtering [18], have
drawn much attention due to their efficiency and impressive
results. Similar to autoencoders [1], these methods adopt an
unsupervised learning scheme that learns feature represen-
tations of the input image, where raw data is used for super-
vision. Although our method shares the similar concept, to
the best of our knowledge it is the first end-to-end trainable
CNN architecture designed for image harmonization.

However, these image editing pipelines may suffer from
missing semantic information in the finer level during re-
construction, and such semantics are important cues for un-
derstanding image contents. Unlike previous methods that
do not explicitly use semantics, we incorporate an addi-
tional model to predict pixel-wise scene parsing results and
then propagate this information to the harmonization model,
where the entire framework is still end-to-end trainable.

3. Deep Image Harmonization
In this section, we describe the details of our proposed

end-to-end CNN model for image harmonization. Given



(a) Miscrosoft COCO & Flickr

(b) MIT-Adobe FiveK
Figure 2. Data acquisition methods. We illustrate the approaches
for collecting training pairs for the datasets (a) Miscrosoft COCO
and Flickr via color transfer, and (b) MIT-Adobe FiveK with dif-
ferent styles.

a composite image and a foreground mask as the input,
our model outputs a harmonized image by adjusting fore-
ground appearances while retaining the background region.
Furthermore, we design a joint training process with scene
parsing to understand image semantics and thus improve
harmonization results. Figure 3 shows an overview of the
proposed CNN architecture. Before describing this net-
work, we first introduce a data collection method that allows
us to obtain large-scale and high-quality training pairs.

3.1. Data Acquisition

Data acquisition is an essential step to successfully train
a CNN. As described above, an image pair containing the
composite and harmonized images is required as the input
and ground truth for the network. Unlike other unsuper-
vised learning tasks such as [30, 20] that can easily obtain
training pairs, image harmonization task requires expertise
to generate a high-quality harmonized image from a com-
posite image, which is not feasible to collect large-scale
training data.

To address this issue, we start from a real image which
we treat as the output ground truth of our network. We then
select a region (e.g., an object or a scene) and edit its ap-
pearances to generate an edited image which we use as the
input composite image to the network. The overall process
is described in Figure 2. This data acquisition method en-
sures that the ground truth images are always realistic so
that the goal of the proposed CNN is to directly reconstruct
a realistic output from a composite image. In the following,
we introduce the details of how we generate our synthesized
dataset.

Images with Segmentation Masks. We first use the Mi-
crosoft COCO dataset [17], where the object segmentation
masks are provided for each image. To generate synthesized
composite images, we randomly select an object and edit its

Table 1. Number of training and test images on three synthesized
datasets.

MSCOCO MIT-Adobe Flickr

Training set 51187 4086 4720

Test set 3842 68 96

appearances via a color transfer method. In order to ensure
that the edited images are neither arbitrary nor unrealistic in
color and tone, we construct the color transfer functions by
searching for proper reference objects.

Specifically, given a target image and its corresponding
object mask, we search a reference image which contains
the object with the same semantics. We then transfer the
appearance from the reference object to the target object.
As such, we ensure that the edited object still looks plausi-
ble but does not match the background context. For color
transfer, we compute statistics of the luminance and color
temperature, and use the histogram matching method [16].

To generate a larger variety of transferred results, we ap-
ply different transfer parameters for both the luminance and
color temperature on one image, so that our learned network
can adapt to different scenarios in real cases. In addition, we
apply an aesthetics prediction model [11] to filter out low-
quality images. An example of generated synthesized input
and output pairs are shown in Figure 2(a).

Images with Different Styles. Although the Microsoft
COCO dataset provides us with rich object categories, it
is still limited to certain objects. To cover more object cat-
egories, we augment it with the MIT-Adobe FiveK dataset
[3]. In this dataset, each original image has another 5 differ-
ent styles that are re-touched by professional photographers
using Adobe Lightroom, resulting in 6 editions of the same
image. To edit the original image, we begin with one ran-
domly selected style and manually segment a region. We
then crop this segmented region and overlay on the image
with another style to generate the synthesized composite
image. An example set is presented in Figure 2(b).

Flickr Images with Diversity. Since images in the MIT-
Adobe FiveK and Microsoft COCO datasets only contain
certain scenes and styles, we collect a dataset from Flickr
with larger diversity such as images containing different
scenes or stylized images. To generate input and ground
truth pairs, we apply the same color transfer technique de-
scribed for the Microsoft COCO dataset. However, since
there is no semantic information provided in this dataset to
search proper reference objects for transfer, we use a pre-
trained scene parsing model [31] to predict semantic pixel-
wise labels. We then compute a spatial-pyramid label his-
togram [15] of the target image and retrieve reference im-
ages from the ADE20K dataset [31] with similar histograms
computed from the ground truth annotations.



Figure 3. The overview of the proposed joint network architecture. Given a composite image and a provided foreground mask, we first pass
the input through an encoder for learning feature representations. The encoder is then connected to two decoders, including a harmonization
decoder for reconstructing the harmonized output and a scene parsing decoder to predict pixel-wise semantic labels. In order to use the
learned semantics and improve harmonization results, we concatenate the feature maps from the scene parsing decoder to the harmonization
decoder (denoted as dot-orange lines). In addition, we add skip links (denoted as blue-dot lines) between the encoder and decoders for
retaining image details and textures. Note that, to keep the figure clean, we only depict the links for the harmonization decoder, while the
scene parsing decoder has the same skip links connected to the encoder.

Next, we manually segment a region (e.g., an object or
a scene) in the target image. Based on the predicted scene
parsing labels within the segmented target region, we find a
region in the reference image that shares the same labels as
the target region. The composite image is then generated by
the color transfer method mentioned above (Figure 2(a)).

Discussions. With the above-mentioned data acquisition
methods on three datasets, we are able to collect large-
scale and high-quality training and test pairs (see Table 1
for a summarization). This enables us to train an end-to-
end CNN for image harmonization with several benefits.
First, our data collection method ensures that the ground
truth images are realistic, so the network can really capture
the image realism and adjust the input image according to
the learned representations.

Another merit of our method is to enable quantitative
evaluations. This is, we can use the synthesized compos-
ite image to measure errors by comparing to the ground
truth images. Although there should be no single best so-
lution for the image harmonization task, this quantitative
measurement can give us a sense of how closer the images
generated by different methods are, to a truly realistic image
(discussed in Section 4), which is not addressed by previous
approaches.

3.2. Context-aware Encoder-decoder

Motivated by the potential of the Context Encoders [20],
our CNN learns feature representations of input images via
an encoder and reconstruct the harmonized output results
through a decoder. While the proposed deep network bears

some resemblance, we add novel components for image
harmonization. In the following, we present the objective
function and proposed network architecture with discussion
of novel components.

Objective Function. Given a RGB image I ∈ RH×W×3

and a provided binary mask M ∈ RH×W×1 of the compos-
ite foreground region, we form the input X ∈ RH×W×4

by concatenating I and M , where H and W are image
dimensions. Our objective is to predict an output image
Ŷ = F(X) that optimizes the reconstruction (L2) loss with
respect to the ground truth image Y :

Lrec(X) =
1

2

∑
h,w

‖ Yh,w − Ŷh,w ‖22 . (1)

Since the L2 loss is optimized with the mean of the data
distribution, the results are often blurry and thus miss im-
portant details and textures from the input image. To over-
come these problems, we show that adding skip links from
the encoder to the decoder can recover those image details
in the proposed network.

Network Architecture. Figure 3 shows basic components
of our network architecture with an encoder and a harmo-
nization decoder. The encoder is a series of convolutional
layers and a fully connected layer to learn feature repre-
sentations from low-level image details to high-level con-
text information. Note that as we do not have any pooling
layers, fine details are preserved in the encoder [20]. The
decoder is a series of deconvolutional layers which aim to



reconstruct the image via up-sampling from the representa-
tions learned in the encoder and simultaneously adjust the
appearances of the foreground region.

However, image details and textures may be lost during
the compression process in the encoder, and thus there is
less information to reconstruct the contents of the input im-
age. To retain those details, it is crucial that we add a skip
link from each convolutional layer in the encoder to each
corresponding deconvolutional layer in the decoder. We
show this method is effectively useful without adding ad-
ditional burdens for training the network. Furthermore, it
can alleviate the problem of the L2 loss that prefers a blurry
image solution.

Implementation Details. We implement the proposed net-
work in Caffe [9] and use the stochastic gradient descent
solver for optimization with a fixed learning rate 10−8. In
addition, we compute the loss on the entire image rather
than the foreground mask to account for the reconstruc-
tion differences in the background region. We also try a
weighted loss that considers the foreground region more im-
portantly, but the results are similar and thus we use a sim-
ple loss function. Since the entire network is trained from
scratch, we use the batch normalization [8] followed by a
scaling layer and an ELU layer [5] after each convolutional
and deconvolutional layers to facilitate the training process.

Discussions. We conduct experiments using the proposed
network architecture with different input sizes. Interest-
ingly, we find that the one with larger input size performs
better in practice, and thus we use input resolution of
512×512. This observation also matches our intuition when
designing the encoder-decoder architecture with skip links,
where the network can learn more context information and
details from a larger input image. To generate higher reso-
lution results, we can up-sample the output of the network
with joint bilateral filtering [22], in which the input com-
posite image is used as the guidance to keep clear details
and sharp textures.

3.3. Joint Training with Semantics

In the previous section, we propose an encoder-decoder
network architecture for image harmonization. In order to
further improve harmonization results, it is natural to con-
sider semantics of the composite foreground region. The
ensuing question is how to incorporate such semantics in
our CNN, so that the entire network is still end-to-end train-
able. In this section, we propose a modified network that
can jointly train the image harmonization and scene parsing
tasks simultaneously, while propagating semantics to im-
prove harmonization results. The overall architecture is de-
picted in Figure 3, which adds the scene parsing decoder
branch.

Joint Loss. In addition to the reconstruction loss described
for image harmonization in (1), we introduce a pixel-wise
cross-entropy loss with the standard softmax function E for
scene parsing:

Lcro(X) = −
∑
h,w

log(E(Xh,w; θ)). (2)

We then define a combined loss for both tasks and optimize
it jointly:

L = λ1Lrec + λ2Lcro, (3)

where λi is the weight to control the balance between losses
for image harmonization and scene parsing.

Network Architecture. We design the joint network by
inheriting the encoder-decoder architecture described in the
previous section. Specifically, we add a decoder to predict
scene parsing results, while the encoder is to learn feature
representations and is shared for both decoders. To extract
semantic knowledge from the scene parsing model and help
harmonization process, we concatenate feature maps from
each deconvolutional layer of the scene parsing decoder to
the harmonization decoder, except for the last layer which
focuses on image reconstruction. In addition, skips links
[19] are also connected to the scene parsing decoder to gain
more information from the encoder.

Implementation Details. To enable the training process for
the proposed joint network, both the ground truth images for
harmonization and scene parsing are required. We then use
a subset of the ADE20K dataset [31], which contains 12080
training images with the top 25 frequent labels. Similarly,
training pairs for harmonization are obtained in a way de-
scribed in the data acquisition section via color transfer.

To train the joint network, we start with the training data
from the ADE20K dataset to obtain an initial solution for
both the harmonization and scene parsing by optimizing (3).
We set λ1 = 1 and λ2 = 100 with a fixed learning rate
10−8. Next, we fix the scene parsing decoder with λ2 = 0
and finetune rest of the network using all the training data
introduced in Section 3.1 to achieve the optimal solution for
image harmonization. Note that, during this fintuning step,
the scene parsing decoder is able to propagate learned se-
mantic information through the links between two decoders.

Discussions. With the incorporated scene parsing model,
our network can learn the color distribution of certain se-
mantic categories, e.g., the skin color on human or the sky-
like colors. In addition, the learned background semantics
can help identify which region to match for better fore-
ground adjustment. During harmonization, it essentially
uses these learned semantic priors to improve the realism
of output results. Moreover, the incorporation of semantic
information through joint training not only helps our image



Ground truth Input Lalonde [13] Xue [28] Zhu [32] Ours

23.68 14.01 24.19 23.89 31.96

17.59 19.26 18.26 17.85 24.40

15.97 14.71 16.13 16.97 24.48

Figure 4. Example results on synthesized datasets for the input, ground truth, three state-of-the-art methods and our proposed network.
From the first row to the third one, we show one example for the MSCOCO, MIT-Adobe and Flickr datasets. Each result is associated with
a PSNR score. Among all the methods, our harmonization results obtain the highest score.

Table 2. Comparisons of methods with mean-squared errors
(MSE) on three synthesized datasets.

MSCOCO MIT-Adobe Flickr

cut-and-paste 400.5 552.5 701.6
Lalonde [13] 667.0 1207.8 2371.0

Xue [28] 351.6 568.3 785.1
Zhu [32] 322.2 360.3 475.9

Ours (w/o semantics) 80.5 168.8 491.7
Ours 76.1 142.8 406.8

harmonization task, but also can be adopted to benefit other
image editing tasks [30, 20].

To validate our scene parsing model, we compare the
proposed joint network to a deeplab model [4], MSc-
COCO-LargeFOV, that has a similar model capacity and
size to our model but is initialized from a pre-trained model
for semantic segmentation. We evaluate the scene parsing
results on the validation set of the ADE20K dataset with the
top 25 frequent labels. The mean intersection-over-union
(IoU) accuracy of our joint network is 32.2, while the MSc-
COCO-LargeFOV model achieves IoU as 36.0. Although
our model is not specifically designed for scene parsing and
is learned from scratch, it shows that our method performs

Table 3. Comparisons of methods with PSNR scores on three syn-
thesized datasets.

MSCOCO MIT-Adobe Flickr

cut-and-paste 26.3 23.9 25.9
Lalonde [13] 22.7 21.1 18.9

Xue [28] 26.9 24.6 25.0
Zhu [32] 26.9 25.8 25.4

Ours (w/o semantics) 32.2 27.5 27.2
Ours 32.9 28.7 27.4

competitively against a state-of-the-art model for semantic
segmentation.

4. Experimental Results
We present the main results on image harmonization

with comparisons to the state-of-the-art methods in this sec-
tion. More results and analysis can be found in the supple-
mentary material.

Synthesized Data. We first evaluate the proposed method
on our synthesized dataset for quantitative comparisons. Ta-
ble 2 and 3 show the results of mean-squared errors (MSE)

Figure 4. Example results on synthesized datasets for the input, ground truth, three state-of-the-art methods and our proposed network.
From the first row to the third one, we show one example for the MSCOCO, MIT-Adobe and Flickr datasets. Each result is associated with
a PSNR score. Among all the methods, our harmonization results obtain the highest score.

Table 2. Comparisons of methods with mean-squared errors
(MSE) on three synthesized datasets.

MSCOCO MIT-Adobe Flickr

cut-and-paste 400.5 552.5 701.6
Lalonde [13] 667.0 1207.8 2371.0

Xue [28] 351.6 568.3 785.1
Zhu [32] 322.2 360.3 475.9

Ours (w/o semantics) 80.5 168.8 491.7
Ours 76.1 142.8 406.8

harmonization task, but also can be adopted to benefit other
image editing tasks [30, 20].

To validate our scene parsing model, we compare the
proposed joint network to a deeplab model [4], MSc-
COCO-LargeFOV, that has a similar model capacity and
size to our model but is initialized from a pre-trained model
for semantic segmentation. We evaluate the scene parsing
results on the validation set of the ADE20K dataset with the
top 25 frequent labels. The mean intersection-over-union
(IoU) accuracy of our joint network is 32.2, while the MSc-
COCO-LargeFOV model achieves IoU as 36.0. Although
our model is not specifically designed for scene parsing and
is learned from scratch, it shows that our method performs

Table 3. Comparisons of methods with PSNR scores on three syn-
thesized datasets.

MSCOCO MIT-Adobe Flickr

cut-and-paste 26.3 23.9 25.9
Lalonde [13] 22.7 21.1 18.9

Xue [28] 26.9 24.6 25.0
Zhu [32] 26.9 25.8 25.4

Ours (w/o semantics) 32.2 27.5 27.2
Ours 32.9 28.7 27.4

competitively against a state-of-the-art model for semantic
segmentation.

4. Experimental Results

We present the main results on image harmonization
with comparisons to the state-of-the-art methods in this sec-
tion. More results and analysis can be found in the supple-
mentary material.

Synthesized Data. We first evaluate the proposed method
on our synthesized dataset for quantitative comparisons. Ta-
ble 2 and 3 show the results of mean-squared errors (MSE)



Input No semantics With semantics

18.86 28.15 33.32

Figure 5. Example results to show the comparison of our network
with or without incorporating semantic information. With seman-
tics, our result can recover the skin color and obtain higher PSNR
score.

and PSNR scores between the ground truth and harmonized
image. Note that it is the first quantitative evaluation on
image harmonization, which reflects how close different re-
sults are to realistic images. We show that our joint network
consistently achieves better performance compared to the
single network without combining scene parsing decoder
and other state-of-the-art algorithms [13, 28, 32] on all three
synthesized datasets in terms of MSE and PSNR. In addi-
tion, it is also worth noticing that our baseline network with-
out semantics already outperforms other existing methods.

In Figure 4, we show visual comparisons with respect to
PSNR of the harmonization results generated from different
methods. Overall, the harmonized images by the proposed
methods are more realistic and closer to the ground truth
images, with higher PSNR values. In addition, Figure 5
presents one comparison of our networks with and without
incorporating the scene parsing decoder. With semantic un-
derstandings, our joint network is able to harmonize fore-
ground regions according to their semantics and produce
realistic appearance adjustments, while the one without se-
mantics may generate unsatisfactory results in some cases.

Real Composite Images. To evaluate the effectiveness of
the proposed joint network in real scenarios, we create a test
set of 52 real composite images and combine 48 examples
from Xue et al. [28], resulting in a total of 100 high-quality
composite images. To cover a variety of real examples, we
create composite images including various scenes and styl-
ized images, where the composite foreground region can be
an object or a scene.

We follow the same procedure as [28, 32] to set up a
user study on Amazon Mechanical Turk, in which each user
sees two randomly selected results at a time and is asked to
choose the one that looks more realistic. For sanity checks,
we use ground truth images from the synthesized dataset
and heavily edited images to create easily distinguishable
pairs that are used to filter out bad users. As a result, a total
of 225 subjects participate in this study with a total of 10773

(a) Input

(b) Mask (c) Output

Figure 6. Given an input image (a), our network can adjust the
foreground region according to the provided mask (b) and pro-
duce the output (c). In this example, we invert the mask from the
one in the first row to the one in the second row, and generate har-
monization results that account for different context and semantic
information.

Table 4. Comparisons of methods with B-T scores on real com-
posite datasets.

Dataset [28] Our test set Overall

cut-and-paste 1.080 1.168 1.139
Lalonde [13] 0.557 0.067 0.297

Xue [28] 1.130 0.885 1.002
Zhu [32] 0.875 0.867 0.876

Ours 1.237 1.568 1.424

pairwise results (10.8 results for each pair of different meth-
ods on average). After obtaining all the pairwise results, we
use the Bradley-Terry model (B-T model) [2, 12] to calcu-
late the global ranking score for each method.

Table 4 shows that our method achieves the highest B-T
score in terms of realism compared to state-of-the-art ap-
proaches on both our created test set and examples from
[28]. Interestingly, our method is the only one that can
improve the harmonization result with a significant margin
from the input image (by cut-and-paste).

Figure 7 shows sample harmonized images by the evalu-
ated methods. Overall, our joint network produces realistic
output images, which validates the effectiveness of using
synthesized data to directly learn how to harmonize com-
posite images from realistic ground truth images. The re-
sults from [28] may be easily affected by the large appear-
ance difference between the background and foreground re-
gions during matching. For the method [32], it may gener-
ate unsatisfactory results due to the errors introduced during
realism prediction, which may affect the color optimization
step. In contrast, our network adopts a single feed-forward
scheme learned from a well-constructed training set, and
utilizes semantic information to improve harmonization re-
sults. The complete results on the real composite test set are
presented in the supplementary material.



Input Lalonde [13] Xue [28] Zhu [32] Ours

Figure 7. Example results on real composite images for the input, three state-of-the-art methods and our proposed network. We show that
our method produces realistic harmonized images by adjusting composite foreground regions containing various scenes or objects.

Generalization to Background Masks. With the provided
foreground mask, our network can learn context and seman-
tic information while transforming the composite image to
a realistic output image. Therefore, our method can be ap-
plied to any foreground masks containing arbitrary objects,
scenes or clutter backgrounds. Figure 6 illustrates one ex-
ample, where originally the adjusted foreground region is
the child. Instead, we can invert the mask and focus on
harmonizing the region of inverted child. The result shows
that our network can produce realistic outputs from differ-
ent foreground masks.

Runtime Performance. Previous image harmonization
methods rely on matching statistics [13, 28] or optimizing
an adjustment function [32], which usually require longer
processing time (more than 10 seconds with a 3.4GHz Core
Xeon CPU) on a 512× 512 test image. In contrast, our pro-

posed CNN is able to harmonize an image in 0.1 seconds
with a Titan X GPU and 12GB memory, or 3 seconds with
a CPU.

5. Concluding Remarks
In this paper, we present a novel network that can cap-

ture both the context and semantic information for image
harmonization. We demonstrate that our joint network can
be trained in an end-to-end manner, where the semantic
decoder branch can effectively provide semantics to help
harmonization. In addition, to facilitate the training pro-
cess, we develop an efficient method to collect large-scale
and high-quality training pairs. Experimental results show
that our method performs favorably on both the synthesized
datasets and real composite images against other state-of-
the-art algorithms.
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Xeon CPU) on a 512× 512 test image. In contrast, our pro-

posed CNN is able to harmonize an image in 0.1 seconds
with a Titan X GPU and 12GB memory, or 3 seconds with
a CPU.
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ture both the context and semantic information for image
harmonization. We demonstrate that our joint network can
be trained in an end-to-end manner, where the semantic
decoder branch can effectively provide semantics to help
harmonization. In addition, to facilitate the training pro-
cess, we develop an efficient method to collect large-scale
and high-quality training pairs. Experimental results show
that our method performs favorably on both the synthesized
datasets and real composite images against other state-of-
the-art algorithms.
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