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Abstract
Shadow removal is a challenging problem and previous approaches often produce de-shadowed regions that are visually
inconsistent with the rest of the image. We propose an automatic shadow region harmonization approach that makes the
appearance of a de-shadowed region (produced using any previous technique) compatible with the rest of the image. We use
a shadow-guided patch-based image synthesis approach that reconstructs the shadow region using patches sampled from non-
shadowed regions. This result is then refined based on the reconstruction confidence to handle unique textures. Qualitative
comparisons over a wide range of images, and a quantitative evaluation on a benchmark dataset show that our technique
significantly improves upon the state-of-the-art.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—

1. Introduction

Cast shadows occur in many photography scenarios, and often
lead to distracting artifacts that detract from the visual appeal of
a photograph. Removing cast shadows from such photographs is
often highly desirable, yet difficult to achieve due to its inherently
ill-posed nature: it is difficult for computational techniques, without
any prior knowledge, to disambiguate shadows from dark textured
regions in the scene.

In the past decade, many approaches have been proposed for
removing shadows in photographs. However, many of these tech-
niques suffer from inconsistency artifacts, i.e. the de-shadowed
region is visually incompatible with the rest of the input image.
Most previous methods assume simplified shadow models that boil
down to a simple color and intensity correction of the shadowed
pixels. This assumption typically does not produce good results
in presence of soft shadows, complex spatially-varying textures,
complex reflectance properties of the underlying material (e.g.,
BRDF) and loss of dynamic range in the shadow region (see
Fig. 1 top). Postprocessing, such as tone/color adjustment, gamma
correction, lossy compression, can also easily violate common
shadow models.

In this work we aim at providing new tools that can help users
achieve high quality shadow removal results. We propose a new
technique called Shadow Region Harmonization (SRH), which can
effectively remove inconsistency artifacts from existing shadow
removal results. Our method is built on the general idea of building
correspondence between shadow and non-shadow regions, and
enforcing consistent color and texture properties of corresponding
regions. Our key insight is that the shadow region often (but not
always) contains the same materials as in the non-shadow regions.

Thus, correspondence between these two types of regions can
be constructed locally, instead of globally. We build such corre-
spondence using a guided patch-based image synthesis framework,
where shadow regions are reconstructed using non-shadow ones.
For each shadow patch, we use its corresponding non-shadow ones
to compute a parametric appearance correction model based on
color and texture. To handle unique shadow materials, we compute
for each patch a correction confidence, and use it in an optimization
process to ensure that patches without good correspondences can
also be corrected properly. We quantitatively evaluate the SRH
method on a recent benchmark dataset [GC14], and show that it
can significantly improve the output of existing methods, including
the state-of-the-art ones.

2. Related Work

We first briefly review representative works closely related to ours,
and then discuss the inconsistency artifacts in previous methods in
more detail.

Shadow removal is an extensively studied problem and mod-
ern approaches are well summarized in recent surveys [XQJ∗06,
SSL12]. Shadow analysis is also closely related to shadow detec-
tion, which still attracts researches in recent years [RMG16], and
intrinsic image decomposition [BT78, GJAF09] – the problem of
separating an image into reflectance and illumination components
– though shadow removal focuses on the illumination variation
caused by occluded light sources.

A common way to detect shadows is to use illuminant invariant
features [EFA14, FHLD02], which help to detect shadow bound-
aries. Shadow removal can then be achieved by reconstructing
the image with the shadow gradients edited [FHLD02, FF05].
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(a) Input image (b) Previous result (c) Our result (d) (e) (f)

(g) Input image (h) Previous result (i) Our result

Figure 1: Top row: input image (a)(d); the state-of-the-art shadow removal method of Liu and Gleicher. [LG08] produces results with color
inconsistencies (b)(e); our shadow region harmonization (SRH) method automatically corrects these issues (c)(f). Bottom row: input image
(g); the state-of-the-art shadow removal method of Liu and Gleicher. [XXZC13] produces results with texture inconsistencies (h); our shadow
region harmonization (SRH) method automatically corrects these issues (i).

Baba el al. [BMA04] estimate shadow density directly using patch
lightness. Gryka et al. [GTB15] extract soft shadows by learning
a regression function from image patches to shadow mattes. These
techniques however assume linear shadow models, which may not
work well for images that have been processed by a non-linear post-
procssing pipeline. Laplacian pyramid [SL08] and gradient domain
processing [LG08] have been used to improve the consistency of
textures between well-lit and shadowed regions. These techniques
might not produce artifact-free results when there are multiple
textures in the same shadow region. Guo et al. [GDH11] build a
classifier to detect shadowed and non-shadowed region pair of the
same texture, however it is based on image segmentation, which
itself could be fragile on complex scenes.

Because of the inherently ambiguous nature of shadow detection
and removal, many previous approaches require manual specifi-
cation of the shadow region [SL08, LG08, MTC07]. Given this
input, shadow removal can be posed as a matting [WTBS07] or
labeling [MMI10] problem.

Patch-based synthesis has shown great success in image
and video completion [WSI07] and other editing tasks since
the introduction of PatchMatch [BSFG09] – a fast approximate
method for computing patch-based dense correspondences.
PatchMatch has been generalized to support scaling and rotation
of patches [BSGF10] as well as gain/bias of each individual color
channels [HSGL11]. This family of techniques have been widely
used for finding patch correspondence in a rotation and scale-
invariant manner, and can also handle differences in illumination
conditions.

Our SRH algorithm uses guided patch-based synthesis [WSI07]
to reconstruct the shadow region using non-shadow patches, using
the initial shadow removal result as guidance. This is similar
to the Image Analogies framework [HJO∗01] that was used for
guided texture synthesis and image enhancement. In our method
we address a unique challenge: the shadow region may contain
unique structures/materials, and thus patch synthesis can only be

partially successful. We use an optimization approach that grace-
fully combines traditional shadow color correction with patch-
based synthesis to generate consistent removal results in the entire
shadow region. Interestingly, Gryka et al. [GTB15] also used patch-
based image completion [WSI07] to compute one of the features
for its learning based framework. However the synthesis was
not guided so the completed content might end up looking very
different from the real one.

Inconsistency artifacts of shadow removal Existing shadow
removal approaches often produce inconsistency artifacts in re-
covered shadow regions, due to the violation of the simplified
shadow models they use; these include both color and texture
inconsistencies. Specifically, most approaches cannot model the
loss of dynamic range in shadow regions [FDL04, MTC07], which
leads to inconsistent noise properties and texture characteristics
between recovered shadow regions and non-shadow regions, such
as the examples in Fig. 4. Pixel-based approaches [FHLD02,
FDL04, BMA04] suffer from inaccuracies in the estimation of the
shadow parameters, leading to color shifts or residual shadows
in the recovered shadow regions(Fig. 1(top)). To correct such
artifacts some methods leverage shadow/non-shadow region cor-
respondence [SL08, LG08, GC14], or region-based color trans-
fer [GCLB13]. However, they are still not very robust to handle
more complex textures, reflection and shading properties. Fig. 3(e)
shows an example with a colorful translucent occluder, where
the green color can not be eliminated using any existing shadow
removal methods.

Our SRH approach builds dense correspondence between
shadow and non-shadow regions to enforce both color and texture
consistency, as shown in Fig. 1. It is an automatic post-processing
method that is independent of specific shadow removal approach
being applied first, and thus can be applied widely.

c© 2016 The Author(s)
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(a) Input image (b) Initial result (c) Shadow mask (d) Patch synthesis, IS (e) Confidence, C (f) Final result, IC

Figure 2: Given an input image I (a), we compute an initial shadow removal result, IN (b) using current shadow removal methods (top,
[LG08], bottom, [MMI10]). We use this result to estimate a shadow mask (c), and a patch-based synthesized image, IS (d). This result is
inaccurate in regions that are not observed in the non-shadow region and this is captured by the confidence map, C (e). Combining IN and
IS using C gives us the final correction, IC, (f) where the inconsistency artifacts in IN are removed.

3. Our Approach

Our SRH approach takes the original image, I, and an initial
shadow removal result, IN , as input, and produces a higher quality
result, IH .

3.1. The Harmonization Model

In contrast to previous shadow removal methods that use pixelwise
shadow models, the SRH method is based on the matching of
image patches. It computes a parametric Appearance Harmo-
nization Model, which describes for each shadow patch, how to
change its color and texture to make it more consistent with its
corresponding non-shadow patches. It contains three components:
(1) color correction parameters, (2) texture correction parameters,
and (3) a correction confidence.

Color Correction We model the effect of a shadow as a per-
channel affine transform on the pixel values. Shadows tend to be
spatially smooth, and we incorporate this prior by assuming that
this affine transform is constant within a small patch (e.g., 5× 5).
This gives us the following color correction model:

IH
c (P) = gc(P) · IN

c (P)+bc(P), (1)

where c is the color channel index, IH(P) and IN(P) correspond
to patches P in IH and IN , and gc(P) and bc(P) are per-patch, per-
channel gain and bias values that together constitute our affine color
correction term.

Texture Correction The standard deviation of color channels
within an image patch is often used to describe local texture and
image details [SL08, LG08]. We denote the standard deviation of
patch P and color channel c in IN and IH as σ

N
c (P) and σ

H
c (P),

respectively. We scale σ
N(P) as:

σ
H
c (P) = sc(P) ·σN

c (P), (2)

so that shadow patches have the same level of local color contrast
as the corresponding non-shadow ones. Note that the scale sc is
different from the gain in Eqn. 1 as it controls the deviation around
the mean color (vs. 0).

Correction Confidence To estimate the above correction param-
eters for each patch, we use a patch synthesis approach to match
shadow and non-shadow patches of the same material. Due to
limitations of patch synthesis, not all matches are reliable, and the
estimated parameters at these patches are incorrect. To describe the
reliability of the correction parameters of a specific shadow patch
P, we compute an extra confidence value C(P) in [0,1] and add it
to the parameter list. We will describe how to compute this value in
Sec. 3.2.2.

Final Model Allowing gain, bias and texture scaling in every
color channel will result in a 10 dimensional parameter vector for
each pixel. To maintain a good balance between model complexity
and flexibility, in practice we choose to apply corrections in
CIELab space, and only enable gain in the L channel, bias in the
a and b channels for color correction, and only the L channel for
texture correction. This gives us a 5-channel parameter map S =
(gL,bA,bB,sL,C), which we refer to as the shadow correction map.
Other parameter combinations will be discussed and compared in
Sec. 4.3.

3.2. Shadow Correction Map Generation

We now describe how to estimate the shadow correction map S,
given the source image I and an initial shadow removal result IN .
Our key idea is to build dense correspondences between shadow
and non-shadow patches, and derive the correction parameters from
them in a way that unique shadow structures and materials can be
properly handled.

A binary mask is needed to indicate which pixels are inside
the shadow region that need to be corrected. In our work we
assume the only difference between IN and I is the color of shadow
pixels. We apply a small threshold on the difference image IN − I
to generate the correction region Rc, and further apply a small
dilation operation using a 3× 3 kernel to remove occasional small
holes inside it. This is shown in Fig. 2(c).

c© 2016 The Author(s)
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3.2.1. Patch-based Synthesis

We use patch-based synthesis to synthesize a new shadow-free
image, IS, where the correction region Rc has been filled using
patches from the source region Rs = I\Rc. We use a guided
variant of the Image Melding algorithm [DSB∗12] as the basis for
this synthesis task, given its support for patch scaling, rotation,
reflection, and color gain and bias. It is applied in a coarse-to-fine
manner on an image pyramid.

Despite its color and texture inconsistencies, IN usually gives
us a good initial estimation of the final result that can be used as
guidance for the synthesis process. We thus use IN in two ways.
First, we use it to initialize the synthesis result, IS, at the coarsest
level. Second, in the spirit of Image Analogies [HJO∗01] in which
a guidance layer is used for image synthesis, we also include IN

as the guidance layer during the synthesis process. Specifically, the
distance between a patch P in Rc and a patch Q in Rs is defined
as:

d(P,Q) = ||IS(P), IS(Q)||2 +

β ||IN(P) ·g(P)+b(P), IS(P)||2 + γ E(g(P),b(P)), (3)

where ||I(P), I(Q)||2 is the average L2 color distance of two
patches, and β and γ are balancing weights. The second term is
our guidance term; it constrains the synthesized patch IS(P) to be
similar to the initial shadow removal result IN(P). The additional
gain g(P) and bias b(P) are introduced in this term to compensate
for the possible color and intensity inconsistencies in IN . Since we
expect IN to be reasonably close to the final result, we also add a
third term E(g(Pi),b(Pi)) to punish unrealistically large gain and
bias, defined as (P is omitted):

E(g,b) = ∑
c
(|gc−1|+ |bc−0|),c ∈ {L,A,B}. (4)

We use this patch synthesis process to reconstruct IS, which will be
used in the next step to derive the correction map. Fig. 2(d) shows
two synthesis results.

Parameter settings We decompose the input image into a
pyramid with a coarsest scale of size 30 pixels (smaller dimension),
and increase the scale by a factor of 1.4 for each pyramid level.
β is set to 30. Patch distance is computed in CIELab space, and
gain (L channel), bias (a & b channels) ranges are set to [0.9,1.11],
[−0.05,0.05], respectively. γ is set to 4.

3.2.2. Computing Correction Parameters

The synthesis result IS can not be directly used as the final output
for several reasons. Firstly, patch synthesis does not perform well
for regions with unique structures, as shown in Fig. 2(d)(top).
Secondly, patch synthesis may not converge well especially for
highly textured regions, resulting in blurry results, as shown in the
example in Fig. 2(d)(top and bottom). Nevertheless, IS contains
good color and texture information in a large portion of the shadow
region, that can be used to estimate the corresponding parameters
in the correction map.

Color Parameters For each patch P in the correction region, the

color correction parameters can be derived from Eqn. 1 as:

gL(P) = ∑
p∈P

IS
L(p)/ ∑

p∈P
IN
L (p),

bA(P) =
1
||P|| ( ∑

p∈P
IS
A(p)− ∑

p∈P
IN
A (p)),

bB(P) =
1
||P|| ( ∑

p∈P
IS
B(p)− ∑

p∈P
IN
B (p)), (5)

where L, A, B denote the luminance and chrominance channels.

Texture Parameters Directly computing the texture correction
parameter from the synthesis result IS is sub-optimal given that
it may be blurry and lack image details (see Fig. 2(d)(bottom)).
We instead directly use the patch correspondence, instead of final
synthesis result, to estimate this parameter. That is, for patch P in
Rc, we get a source region patch Q that is used to vote for the
final synthesis result. We assume P should have the same texture
characteristics as Q, So the texture consistency parameter can be
computed as:

sL(P) = σQ/σP. (6)

Correction Confidence Given the original shadow removal
result IN and the patch synthesis result IS, the synthesis confidence
C(P) for each patch P is defined as:

C(P) = 1−
ming,b||IN(P)∗g(P)+b(P)− IS(P)||2

||IN(P)||2 + ε
, (7)

where the distance between IN(P) and IS(P) is minimized by
searching the best gain for the L channel, and the best bias for
the a and b channels per patch. The confidence is normalized by
the average pixel luminance ||IN(P)||2 to avoid a bias in dark
regions. ε is a small constant to avoid division by zero. Intuitively,
if IN(Pi) and IS(Pi) contain the same structure and only differ
by a global color transform, we have high confidence that the
patch synthesis result is correct, and the correction parameters
are reliable. Otherwise if IN(Pi) and IS(Pi) contain structural
differences, the confidence value will be low, indicating incorrect
patch synthesis. Example confidence maps are shown in Fig. 2(e);
note that unique structures in the shadow region such as the
dark brown mountain in Fig. 2(top) cannot be synthesized well,
and consequently pixels inside these structures have very small
confidence values.

Next, we describe how to use the confidence map to refine the
parameters in the correction map.

3.2.3. Correction Map Refinement

The initial correction map is not reliable for all shadow patches,
and thus cannot be directly applied to IN . In this section, we show
how to refine it based on the computed correction confidence values
(Eqn. 7). We treat color and texture parameters differently at this
stage due to their inherently different nature.

Color Parameter Refinement Experiments show that the color
correction parameters (gain/bias of CIELAB channel) are generally
quite smooth in the shadow regions.To refine color parameters, we
propagate them from high confidence patches to low confidence

c© 2016 The Author(s)
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ones, by optimizing a quadratic objective function. Specifically, for
channel k (k = L,A,B) of the original color correction parameters,
denoted by Sk

0, we find new parameters Sk that minimize the
following energy function:

Ek = ∑
P

C(P) · (Sk(P)−Sk
0(P))

2

+λs ∑
Q∈N (P)

(1−C(P)) ·A(P,Q) · (Sk(P)−Sk(Q))2, (8)

where N (P) is the set of the neighboring overlapping patches of
P. The first term is the data term that constrains Sk to be close to
the original estimation Sk

0 if the synthesis confidence C(P) is high.
The second term is the smoothness term, weighted by the color
difference of neighboring patches, along with 1−C. The affinity
weight A(P,Q) is defined as:

A(P,Q) = G(||In(P)− In(Q)||2,σm), (9)

where G(x,σ) = exp(−x2/σ
2) is the Gaussian function. The

smooth term allows low confidence patches to receive parameter
values from neighboring patches that have similar colors to them.
In our implementation we set λs = 10 and σm = 0.2, and solve the
linear system using Conjugate Gradient.

Texture Parameter Refinement Unlike the color parameters,
texture parameters are very noisy over the whole image. We
thus cannot refine them using a similar optimization. Instead for
patches with low correction confidence, we resort to the initial
shadow removal result for computing the texture parameters. In
other words, for regions where patch synthesis is not reliable,
we maintain their original texture characteristics in the initial
shadow removal result, to avoid introducing additional artifacts.
Specifically, we use the correction confidence as the interpolation
coefficient to compute the refined texture parameter sL(P) as:

sL(P) =C(P) · sL
0(P)+(1−C(P)) ·1, (10)

Where sL
0(P) is the computed texture parameter using Eqn. 6 on the

synthesized image.

3.3. Applying the Correction Map

The final recovery result is obtained by applying the shadow correc-
tion map S on the initial shadow removal result IN . Specifically, to
remove color inconsistency, we apply color correction parameters
(gL,bA,bB) of S to each patch and vote for the output image ID as:

ID
L (p) =

1
||P|| ∑

q∈P
IN
L (q)∗gL(Q),

ID
A (p) =

1
||P|| ∑

q∈P
(IN

A (q)+bA(Q)),

ID
B (p) =

1
||P|| ∑

q∈P
(IN

B (q)+bB(Q)), (11)

where P and Q are patches centered at pixel p and q, respectively.
Furthermore, to remove texture inconsistency, we apply texture
correction parameters sL of each patch and vote for the final
recovery result IC:

IC
L (p) =

1
||P|| ∑

p∈Q
(

sL(Q)σN
L (Q)

σD
L (Q)

(ID
L (p)−µD

L (Q))+µD
L (Q)), (12)

(a
)

(b
)

(c
)

(d
)

(e
)

Source image Previous result IN Our result IC

Figure 3: Improving previous shadow removal results with color
inconsistency using the proposed SRH algorithm. (a) [FDL04], (b)
[SL08], (c) [GCLB13], (d) [GC14], (e) [GTB15].

where µD(Q), σ
D(Q) are the average color and standard derivation

of patch Q in ID, and σ
N
L (Q) is the standard derivation of patch Q

in IN .

Fig. 2(f) shows examples of the corrected shadow regions. We
can see that the color and texture inconsistency in the initial shadow
removal results have been highly suppressed, resulting in more
natural shadow removal results.

4. Results and Evaluations

We have implemented our algorithm in C++. On a PC with 3.4GHz
CPU and 2G RAM, for a 600× 450 image, our single-threaded
implementation of the SRH algorithm takes about 2 minutes for the
patch-based synthesis step, and 2 seconds for the rest - correction
map construction, refinement and obtaining final result. Note that
the algorithm is not limited to 600× 450 resolution images, some
parameter space (e.g., patch size) should be scaled proportionally
to handle other resolution images. In this section, we evaluate the
SRH method by showing both visual examples and quantitative
evaluation results on a benchmark dataset.

4.1. Visual Comparisons

Figs. 1(top), and 3, show shadow removal results from previ-
ous methods that contain significant color inconsistencies in the
recovered shadow regions, including color shifts (Fig. 1(top),

c© 2016 The Author(s)
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Input image Previous result IN Our result IC

Figure 4: Improving previous results with texture inconsistency using SRH. (a) [FDL04], (b) [WT05], (c) [GCLB13], (d) [GC14], (e)
[GTB15].
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Figure 5: Improving state-of-the-art results on examples in the benchmark dataset [GC14]. (top) Original input images, (middle) Initial
shadow removal results IN using [GC14], (bottom) Our harmonized result IC.

Fig. 3((b)(d)) and residual shadows (Fig. 3(a)(c)). We have ex-
perimented with a wide range of methods include [FDL04, SL08,
LG08,GCLB13,GC14,GTB15]. The inputs for our SRH algorithm
and the results of these methods are all taken from their original

papers †. SRH successfully removes the color inconsistencies in the
original results, and produces results that are more natural-looking.

† Ideally we should have compared all the methods against a common set
of examples. However, we did not have access to the code of many of these

c© 2016 The Author(s)
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(a) Src (b) Syn. IN (α = 0.2) (c) Our result (d) Syn. IN (α = 0.5) (e) Our result (f) Adding noise (g) Our result
images (error = 0.034) (error = 0.027) (error = 0.086) (error = 0.059) (error = 0.066) (error = 0.029)

Figure 6: Results generated by our SRH method with synthetic IN . (a) Full-shadow image & Shadow-free image; (b) and (d) Synthetic IN

generated by linear interpolation of full-shadow image and shadow-free image with α = 0.2,0.5; (c) and (e) SRH result applied on (b) and
(d); Our algorithm is robust to an initial results with 20% residual shadow. (f) Close-up of a synthetic IN with 20% residual shadow and
strong Gaussian noise; (g) SRH result applied on (f). Our algorithm is robust to the apparent noise. Average errors w.r.t ground truth are
reported in the bottom.

In Fig. 1(bottom), Fig. 2(bottom) and Fig. 4 we show shadow
removal results on previous methods that contain texture inconsis-
tencies, such as inconsistent noise properties and texture contrast.
These methods include [FDL04,WT05,GCLB13,XXZC13,GC14].
Again, our SRH method successfully corrects these texture artifacts
and produces more consistent shadow removal results.

In Fig. 5 we show the results of some algorithms on images from
a recently proposed shadow removal benchmark dataset [GC14],
along with improved results using our method. Again, the SRH
method successfully suppresses both color and texture inconsisten-
cies.

4.2. Benchmark Evaluation

We comprehensively evaluate our algorithm on the benchmark
dataset mentioned above. This dataset consists of 214 test images,
and provides quantitative errors of shadow removal results accord-
ing to four attributes (more details in [GC14]): texture, brokenness,
colorfulness and softness. The authors have also published shadow
removal results using their technique as well as two other algo-
rithms [GDH11,GCLB13] for all 214 test examples. We apply SRH
on all the test cases using their shadow removal results as input,
and report new errors and improvements in Table 1. Due to limited
space, we only show the average score of each attribute.

The results show that our SRH method reduces shadow removal
errors for all categories and all the three previous methods. Note
that our algorithm cannot improve cases with detction errors,
where the shadow region is wrongly detected (more in Sec. 4.4).
Given that all these approaches introduce detection errors in some
test cases, the performance improvement on examples with well-
detected shadows are even higher. Some visual comparisons are
shown in Fig. 5. Refer to the supplemental material for all the
results.

4.3. Robustness and Parameter Settings

Sensitivity to the initial result IN - To evaluate the robustness
of the SRH method, we manually generate synthetic examples of

methods. Instead, we compare against each method on its own successful
examples reported in the original paper.

the initial result, IN , with varying amount of residual shadow, by
linearly interpolating shadow images with ground-truth shadow-
free images using a fixed alpha matte α. Fig. 6 illustrates the
performance of the SRH method on one such example on images
generated with different α values and reports the errors of the
corrected results against the ground-truth. For low values of α (0.2),
i.e., medium shadow residuals, our algorithm can still generate a
visually compelling result. At high values of α (0.5), the initial
result is significantly corrupted, and as expected, visual artifacts
arise and errors increase. We also evaluate the case of medium
residual shadows (α = 0.2) and a strong Gaussian noise. Our
algorithm successfully corrects the color distribution and texture
details of the shadow region (Fig. 6(g)), suggesting it is robust
against noise due to the use of patch statistics.

Color space and gain/bias settings - As described in Sec. 3.1,
our shadow harmonization model uses CIELab color space, and
enables gain in the L channel and bias in the a and b channels
for color correction. We denote this model as Model 0). Here we
compare its performance with other commonly-used color spaces
and gain/bias settings: Model 1 (CIELAB, enabling L gain and L,
a, b bias); Model 2 (RGB, enabling R, G, B gain); Model 3 (RGB,
enabling R, G, B gain and bias); Model 4 (HLS, enabling L gain
and H, S bias). For each model, Eqn. 5 and Eqn. 12 are modified
depending on whether gain/bias is enabled for each channel. If
both gain and bias are enabled for a channel, the two values are
computed by matching the mean and standard variation of the patch
pairs. We compare these different color models on the benchmark
dataset, using [GC14]’s shadow removal results as IN . Resulting
errors of each model are reported in supplemental material, which
suggest that Model 0 achieves slightly better performance than
other models.

Parameter ranges Parameter range settings (gain of L channel,
bias of a, b channel) are important parameters in the patch-based
synthesis process of SRH (Sec. 3.2.1). If the ranges are too narrow,
PatchMatch may not have sufficient freedom to correct errors in
the initial shadow removal results. On the other hand, if the ranges
are too wide, patches of different materials are more likely to be
matched. To find the best parameter ranges, we test different range
settings on the benchmark dataset, again using [GC14]’s shadow
removal results as IN . Specifically, we test three parameter range
settings: narrow (L gain [0.99,1.01], a & b bias [−0.01,0.01]),
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Gong [GC14] Gong [GCLB13] Guo [GDH11]
Er Er∗ Er Er∗ Er Er∗

Tex. 0.34 : 0.32 (6%) 0.21 : 0.17 (19%) 0.47 : 0.43 (9%) 0.36 : 0.31 (14%) 0.61 : 0.56 (8%) 0.51 : 0.44 (14%)
Soft. 0.40 : 0.37 (8%) 0.23 : 0.22 (12%) 0.51 : 0.45 (12%) 0.40 : 0.32 (20%) 0.77 : 0.69 (10%) 0.68 : 0.56 (18%)
Bro. 0.42 : 0.40 (5%) 0.25 : 0.22 (12%) 0.59 : 0.53 (10%) 0.52 : 0.41 (21%) 0.81 : 0.77 (5%) 0.76 : 0.70 (8%)
Col. 0.44 : 0.40 (9%) 0.29 : 0.23 (21%) 0.75 : 0.72 (4%) 0.69 : 0.65 (6%) 1.12 : 1.01 (10%) 1.09 : 0.93 (15%)

Other 0.40 : 0.36 (10%) 0.26 : 0.21 (19%) 0.57 : 0.51 (11%) 0.48 : 0.40 (17%) 0.72 : 0.66 (8%) 0.65 : 0.56 (14%)

Table 1: Quantitative results of the SRH algorithm on the benchmark dataset [GC14]. The quality of the results is evaluated w.r.t four
attributes: texture, brokenness, colorfulness and softness. Er is the error for shadow region only, Er∗ is the error for the entire image. Results
format - Error before harmonization : Error after harmonization with SRH (relative error decrease).

middle (L gain [0.9,1.11], A & b bias [−0.05,0.05]), and wide
(L gain [0.8,1.25], a & b bias [−0.1,0.1]). The resulting errors
are reported in supplemental material in detail. The middle range
setting achieves the best performance and we fix the range to
this range when generating all results reported in the paper. Also,
the performance difference between the three settings are small,
indicating the robustness of the algorithm against these parameter
settings.

4.4. Limitations

Our approach has several limitations. Firstly, the SRH method
cannot correct errors introduced by shadow detection failure. For
the example showed in Fig. 7(top), the shadow detection process
of [GCLB13] fails and generates removal results with strong
artifacts in the non-shadow region. SRH removes some of them,
but noticeable artifacts still persist.

We have also observed that previous shadow removal
methods sometimes generate significant boundary discontinuities.
Fig. 7(middle) shows one such example. Our method is mainly
designed for harmonizing the interior of the shadow region, and
is more limited at correcting such boundary discontinuities. As
shown in the figure, it successfully removes color and texture
inconsistencies inside the shadow region, but leaves some amount
of boundary discontinuity in the final result. That’s because our
patch match process would fail for patches along hard shadow
boundaries.

For scenes with complex texture or geometry, our patch-based
synthesis method described in Section 3.2.1 may not always find
semantically correct patch correspondences, leading to synthesis
errors. Such errors could lead to incorrect correction parame-
ters that produce visually noticeable artifacts in the final results.
Fig. 7(bottom) shows one such example, where our harmonized
shadow region is still visually slightly inconsistent with the rest
of the image.

5. Conclusion

We propose a fully automatic Shadow Region Harmonization
approach for removing color and texture inconsistencies introduced
by previous shadow removal methods. This technique is based on
a parametric correction model, whose parameters are estimated
by reconstructing the shadow region using non-shadow patches
through a patch-based, guided image synthesis process. We also

(a) Input image (b) Initial result (c) Our result

Figure 7: Failure cases. (top) Our algorithm does not handle
significant shadow detection failure as shown in this example
from [GCLB13]. (middle) The SRH algorithm harmonizes the
interior of the shadow region, but cannot fix the significant
boundary discontinuities on this example from [GC14]. (bottom)
The SRH algorithm may not perform well for scenes with complex
textures/colors/geometry.

introduce synthesis confidence to deal with unique structures and
materials inside the shadow region. Extensive evaluation shows the
effectiveness and robustness of the proposed method.
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