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Abstract

We present a single-shot system to recover surface ge-

ometry of objects with spatially-varying albedos, from im-

ages captured under a calibrated RGB photometric stereo

setup—with three light directions multiplexed across dif-

ferent color channels in the observed RGB image. Since

the problem is ill-posed point-wise, we assume that the

albedo map can be modeled as piece-wise constant with a

restricted number of distinct albedo values. We show that

under ideal conditions, the shape of a non-degenerate local

constant albedo surface patch can theoretically be recov-

ered exactly. Moreover, we present a practical and efficient

algorithm that uses this model to robustly recover shape

from real images. Our method first reasons about shape

locally in a dense set of patches in the observed image, pro-

ducing shape distributions for every patch. These local dis-

tributions are then combined to produce a single consistent

surface normal map. We demonstrate the efficacy of the ap-

proach through experiments on both synthetic renderings as

well as real captured images.

1. Introduction

Photometric stereo (PS) techniques reconstruct surface

geometry from shading, using images acquired under cal-

ibrated lighting. While other depth sensors—like those

based on triangulation or time-of-flight—provide measure-

ments of depth or distance, shading intensities are directly

related to surface orientation. This makes PS the preferred

choice for recovering high-resolution surface relief. How-

ever, classical PS requires capturing multiple images of an

object under different illumination environments—a mini-

mum of three images for Lambertian objects [6, 13]—to be

well constrained. Consequently, it is predominantly used

for recovering shapes of static objects.

At the same time, reasoning about shape from shading

(SFS) in a single image has been a classical problem in

computer vision [7]. While early work made restrictive

assumptions—like known or constant albedo and known or

directional lighting—Barron and Malik [2] recently demon-

strated that reasonable surface reconstructions are possible

from a single image of an object with unknown spatially-

varying albedo under unknown natural lighting. Although

impressive given the inherent ambiguities in the SFS setup,

their recovered geometries are typically coarse due to the

use of strong smoothness priors, and their inference algo-

rithm is computationally expensive. This is true even when

known lighting is provided as input to their algorithm, pri-

marily because it is designed to handle arbitrary and poten-

tially ambiguous natural illumination environments.

In this paper, we show that efficient and high-quality sur-

face recovery from a single image is possible, when using

a calibrated lighting environment that is specifically cho-

sen to be directly informative about shape. Specifically,

we use the RGB (or color) photometric stereo (RGB-PS)

setup [3, 11, 14], where an object is illuminated by three

monochromatic directional light sources, such that each of

the red, green, and blue channels in the observed image is

“lit” from a different direction. For natural lighting, direc-

tional diversity in color has been shown to be informative

towards shape [10]. But the benefits of this lighting setup

for shape recovery can be better understood by interpreting

it as one that multiplexes the multiple images of classical

PS into the different color channels of a single image.

Strictly speaking, RGB-PS observations are as ambigu-

ous as images under a single directional light. While each

pixel now has observations from three directional lights,

there are also now three unknown albedos—one for each

channel. This is why previous methods using the RGB-

PS setup have had to rely on assuming constant surface

albedo [3, 14], or on capturing additional information [1, 5].

In this work, we present a single-shot RGB-PS estimation

method that can handle spatially varying albedo, by relying

on spatial reasoning to resolve this ambiguity.

We assume that the albedo of the observed surface is

piece-wise constant and consists of a finite, but unknown,

set of distinct albedo values. We motivate our method by

showing that for a typical non-degenerate constant-albedo

local surface patch, its shape is uniquely determined by

ideal Lambertian observations in the RGB-PS setup. How-

ever, this still requires identifying which patches in the im-

age have constant albedo and which straddle boundaries.

Moreover, noise, shadows, and other non-idealities can ren-



Figure 1. Overview of proposed system. (Left) RGB-PS capture: a diffuse surface is illuminated by three directional mono-chromatic

light sources, with shading due to each light captured in a different color channel of an RGB camera. (Right) Inference using a piece-

wise constant albedo model: we first perform local inference on a dense set of overlapping patches in the observed image, producing

distributions of candidate shapes for every patch, where each candidate corresponds to a different assumed albedo from a global set of

candidate albedos. These local distributions are then harmonized to produce a single consistent surface normal map for the object.

der independent per-patch shape reconstructions unstable.

Accordingly, we propose a robust algorithm based on the

inference framework of [15], which combines local patch-

wise inference with a global harmonization step. We an-

alyze a dense overlapping set of patches in the observed

RGB-PS image, and extract local shape distributions for

each after identifying a restricted set of possible albedo val-

ues for the object. We then combine these local distributions

to recover a consistent estimate of global object shape.

We show that the combination of a piece-wise constant

albedo assumption and the observation model in our RGB-

PS setup enable computationally efficient inference. Both

the computation of local shape distributions and global ob-

ject shape can be efficiently mapped to modern parallel ar-

chitectures. We systematically evaluate this method on both

synthetic and real images. We find that our approach, while

also being significantly faster, yields higher quality recon-

structions with much more surface detail than the approach

of [2] designed for generic natural lighting. In fact, we show

that our method approaches the accuracy of classical multi-

image PS with the same set of lighting directions.

2. Related Work

Formalized initially by Horn [7], the SFS problem has

been the focus of considerable research over the last few

decades [16, 4]. A remarkably successful solution to the

problem was recently proposed by [2], who introduced a

versatile method to recover object shape from a single im-

age of a diffuse object with spatially-varying albedo. How-

ever, since it was designed for general un-calibrated nat-

ural lighting, their inference algorithm is computationally

expensive and relies heavily on strong geometric smooth-

ness priors. In contrast, our method is designed for a known

optimized lighting setup, and is able to efficiently recover

shape with a higher degree of surface detail.

RGB-PS was introduced as a means to overcome the

requirement in classical PS of capturing multiple images,

which makes the latter unusable on moving or deforming

objects (although, some methods attempt to handle such

cases using multi-view setups [12]). However, the degree

of ambiguity (5 unknowns for 3 observations) in RGB-PS

reconstruction [11, 14] is the same as that in single image

SFS (3 unknowns for 1 observation). Previous work ad-

dressed this by disallowing albedo variations [3, 9], or by

exploiting the temporal constancy of surface reflectance [8].

Anderson et al. [1] use a stereo rig with multiplexed color

lights. They reconstruct coarse shape and align shading in-

tensities using stereo. This is used to segment the scene into

constant albedo regions, followed by albedo estimation and

refinement of surface depth and orientation estimates.

An exception is the work of Fyffe et al. [5], who like

us, rely on the statistics of natural albedos. They assume

that surface albedo, as a function of spectral wavelength, is

low-dimensional. Since this assumption doesn’t provide an

informative constraint for albedos in just three color chan-

nels, their setup involves multi-spectral capture under six

spectrally distinct color sources. However, this requires a

more complex imaging system and also suffers from lower

light efficiency—since the visible spectrum now is split into

six, instead of three, non-overlapping bands for both illu-

mination and sensing. In contrast, we rely on the spatial,

instead of spectral, statistics of albedos, and are able to em-

ploy regular three-channel RGB cameras.

Our estimation algorithm employs a similar computa-

tional framework as Xiong et al. [15], who used a com-

bination of dense local estimation and globalization for tra-

ditional SFS, assuming known albedo and a single known

directional light. Our goal is different—we seek to recover

high resolution geometric detail in the presence of spatially-

varying albedo, from images captured under the RGB-PS

setup. To this end, we employ a piece-wise constant as-

sumption on albedo which we show to be informative in



our setup, while [15] assumed piece-wise smooth shape.

3. RGB Photometric Stereo

The RGB-PS setup, illustrated in Fig. 1 (left), uses color

multiplexing to capture different lighting directions in a sin-

gle image. An object is illuminated with three directional

mono-chromatic light sources, where each light’s spectrum

is such that it is observed in only one of the three color chan-

nels (red, green, or blue) of the camera. We let lR, lG, lB ∈
R

3 denote the product of the direction and scalar intensity

of these lights, with directions chosen so that the lighting

matrix L = [lR, lG, lB ] ∈ GL(3) is invertible.

Assuming no noise, the observed RGB intensities v(p) ∈
R

3 of an un-shadowed Lambertian surface point are

v(p) = [vR(p), vG(p), vB(p)]
T = diag[κ(p)]LT n̂(p), (1)

where n̂(p) ∈ S
2 the unit normal of the surface point im-

aged at image location p = (x, y), and κ(p) ∈ R3 is the

corresponding RGB surface albedo vector.

Both n̂(p) and κ(p) are unknown, and can not be recov-

ered point-wise from the three observed intensities in v(p)
alone. Therefore, we further assume that the object has

piecewise constant albedo, i.e., the image can be segmented

into a set of regions {Ω1,Ω2, . . .} such that all points within

each region have the same albedo: κ(p) = κi, ∀p ∈ Ωi.

This assumption is useful because, as we show next, if a

region is correctly identified as having constant albedo, its

shape and albedo are typically determined uniquely by the

ideal diffuse intensity measurements in the RGB-PS setup.

Proposition 1. Given noiseless observed intensities v(p) at

a set of locations p ∈ Ω on a diffuse surface patch known

to have constant albedo, i.e., κ(p) = κΩ, ∀p ∈ Ω, the true

surface normals {n̂(p) : p ∈ Ω} and common albedo κΩ

are uniquely determined, if:

1. All intensities v(p) are strictly positive.

2. The true surface is non-degenerate in the sense that

the set {n̂(p)n̂(p)T : p ∈ Ω}, of outer-products of the

true normal vectors, span the space Sym3 of all 3 × 3
symmetric matrices.

Proof: Given κΩ and n̂(p) as the true patch albedo and nor-

mals, let κ′
Ω, n̂′(p) be a second solution pair that also ex-

plains the observed intensities v(p) in the patch Ω. Since

the observed intensities are strictly positive, this implies

that the albedos κΩ, κ
′
Ω are strictly positive as well, and

further that no point is in shadow under any of the lights,

i.e. LT n̂(p), LT n̂′(p) > 0, ∀p ∈ Ω. Then, since LT is

invertible, we can write

diag[κΩ]L
T n̂(p) = diag[κ′

Ω]L
T n̂′(p)

⇒ n̂′(p) = An̂(p), ∀p ∈ Ω, (2)

where we define the matrix A = L−TRLT , with R =
diag[κ′

Ω]
−1diag[κΩ] being a diagonal matrix whose entries

are the ratio between the two albedo solutions. Note that

these entries also correspond to the eigenvalues of A, and

are real and positive since κΩ, κ
′
Ω are real and positive.

Since n̂′(p) are unit vectors, we have as conditions on A:

‖n̂′(p)‖2 = ‖An̂(p)‖2 = 1 ⇒ n̂(p)T (ATA) n̂(p) = 1

⇒
∑

i,j

[

(n̂(p)n̂(p)T ) ◦ (ATA)
]

ij
= 1, ∀p ∈ Ω, (3)

where ◦ refers to the element-wise Hadamard product, and

[Q]ij to the (i, j)th element of the matrix Q. (3) represents

a set of linear equations on the elements of ATA. Since

ATA ∈ Sym3 and {n̂(p)n̂(p)T } spans Sym3, this linear

system is full rank, and can have at most one solution. It is

easy to see that this unique solution is given by ATA = I .

Therefore, A must be an orthogonal matrix, and since

the only orthogonal matrix with only real and positive

eigenvalues is the identity, A = I . This in-turn implies

R = I , κ′
Ω = κΩ, and from (2), n̂′(p) = n̂(p), ∀p ∈ Ω.

Therefore, the solutions must be identical, and the albedo

and normals of the surface are uniquely determined. �

Intuitively, the non-degeneracy condition in Prop. 1 re-

quires that the region Ω have sufficient diversity in its sur-

face normals—such that no non-trivial linear transform pre-

serves the length of all normal vectors. The curvature and

relief in most surface regions typically render them non-

degenerate. An example of a degenerate surface is a perfect

plane—all normals, and therefore all observed intensities,

in a plane are identical, and its orientation has the same am-

biguity as the normal of a single point.

4. Shape Estimation

It is important to remember that the uniqueness result in

the previous section holds only in the ideal case. With ob-

servation noise, for example, there may be multiple diverse

surface-albedo explanations that come equally close to ex-

plaining the intensities in a region. Moreover, a segmenta-

tion of the image into constant-albedo regions is not avail-

able, and must be inferred jointly estimated with the albedo

and shape of each region. In this section, we describe a ro-

bust and efficient algorithm to carry out such inference. For-

mally, we seek to recover the surface normal field n̂(p) of

an object, given its color image v(p) acquired under known

lighting L. Our estimation method uses a framework similar

to that of [15], with local inference followed by globaliza-

tion to simultaneously reasons about whether different local

patches have constant albedos, and if so, about their shape

using the constant-albedo constraint.

Broadly, we consider a set of dense overlapping fixed-

size patches in the observed image, and run local inference

independently, and in-parallel, on each patch. For robust-

ness, rather than commit to a single local shape estimate,



the local inference step produces a distributional output for

every patch in the form of a discrete set of candidate shapes

and associated scores. Each shape in this distribution cor-

responds to surface normals that best explain the observed

patch intensities assuming a different constant patch albedo.

This set is computed for a dense sampling of the albedo

space. Following Prop. 1, patches with good surface varia-

tion produce more accurate shape estimates and have scores

that are tightly clustered around the correct albedo value.

We further assume that the observed object overall has a

limited number of distinct albedos. This adds an additional

constraint to inference that makes the per-patch local dis-

tributions compact. We identify a global albedo set as the

peaks of a histogram of scores over all albedos, computed

from all patches in the observed image. Local distributions

for each patch are then restricted to consist of shape esti-

mates corresponding only to albedos in this global set. This

allows albedo estimates in patches that are not ambiguous

to restrict the space of solutions at other patches that are.

Local inference is followed by global optimization that

finds a consistent normal map for the object by harmonizing

the local shape distributions of all overlapping patches. This

optimization refines the patch-wise shape estimates by con-

sidering consistency with other overlapping patches, and ei-

ther selecting one of the local candidate shapes or deciding

to ignore the local estimates all together to account for the

possibility that the patch albedo is not constant. We next de-

scribe the local inference and globalization steps in detail.

4.1. Local Inference

Given a dense set of patches {Ωm}Mm=1 that cover

the image plane, local inference produces distribu-

tions comprising sets of K surface normal estimates

{n̂m:k(p)}Kk=1, ∀p ∈ Ωm, and corresponding scores

{sm:k}Kk=1, for every patch. These distributions are com-

puted with respect to a global albedo set {κk}Kk=1 for the

image, where normal estimates n̂m:k(p) are computed as-

suming κk as the albedo in patch Ωm.

Local Shape Model During inference, we represent each

set of local surface normals n̂m:k(p) based on a polynomial

model for surface depth within a patch:

zm:k(p) =
∑

dx,dy≥0,1≤dx+dy≤D

(am:k)[dx,dy ] x
dxydy , (4)

where D is the polynomial degree. The coefficient vec-

tor am:k = [{(am:k)[dx,dy ]}]T describes the kth candidate

shape estimate for Ωm, with n̂m:k(p) corresponding to the

surface normals of zm:k(p) above. This approach auto-

matically constrains each candidate normal set n̂m:k(p) to

be integrable. Note that a similar polynomial model (with

D = 2) was also used in [15]. However, unlike [15], our

goal is not to impose smoothness on our local shape esti-

mates, but to make shape estimation more efficient. There-

fore, we employ higher degree polynomials to able to ex-

press high-frequency local relief.

We use ñ ∈ R
2 to represent the co-ordinates of the

intersection of a normal vector n̂ with the z = 1 plane,

i.e. n̂ = [ñ, 1]T /‖[ñ, 1]‖. These co-ordinates correspond

to the gradients of depth: ñ = [∂z/∂x, ∂z/∂y]. We let

nm:k ∈ R
2‖Ωm‖ denote a vector formed by concatenating

the gradient vectors ñm:k(p) at all pixels p ∈ Ωm. Then, as-

suming all patches Ωm are the same size and using a patch-

centered co-ordinate system in (4), we have

nm:k = [. . . , ñm:k(pi), · · · ]T

=
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= Gam:k, (5)

i.e., the concatenated gradient vectors nm:k for all patches

are related to their coefficients am:k by the same matrix G.

Albedo Parameterization For the albedo of each patch,

we search over a discrete set formed by quantizing the space

of possible albedo vectors κ. In particular, we factor κ = τ κ̂
as the product of a scalar “luminance” τ , and a chromaticity

vector κ̂—the latter constrained to be a unit vector with non-

negative elements. This factorization will prove convenient

since the point-wise ambiguity in RGB-PS is resolved when

the albedo chromaticity κ̂ is known. We construct our dis-

crete candidate albedo set by quantizing τ and κ̂ separately

into uniformly spaced bins {τl}Ll=1 in [0, τmax] and {κ̂c}Cc=1

in S
2
+ respectively. Here, the value of τmax depends on the

scale of the intensities v(p) and lighting matrix L.

Global Albedo Set The first step in inference is identify-

ing a restricted global set of possible albedo values present

in the object by pooling evidence from all patches. We do

this by iterating over the discrete values of candidate albedo

chromaticities {κ̂c}, and for each chromaticity κ̂c, comput-

ing estimates of the albedo luminance values τm:c and in-

tegrable surface normals n̂m:c(p), p ∈ Ωm, for every patch

Ωm. We score these estimates in terms of a normalized ren-

dering error smc = Sm(κ̂c × τm:c, n̂m:c) where

Sm(κ, n̂) =

∑

p∈Ωm
‖v(p)− diag[κ]LT n̂(p)‖2
∑

p∈Ωm
‖v(p)‖2 . (6)

Note that the denominator above is the same for differ-

ent albedo-shape explanations for a given patch, and only

serves to weight contributions from different patches.



While we could use a full non-linear optimizer to min-

imize (6) to compute the luminance and normal estimates

τm:c and n̂m:c(p), we find that a much simpler and faster

approach suffices. We first compute normals n̂0
c(p) and lu-

minance values τc(p) for individual pixels simply as

τc(p)× n̂0
c(p) = L−T diag[κ̂c]

−1v(p), (7)

disambiguating the two terms in the LHS using the fact that

τc(p) is a scalar, and n̂0
c(p) a unit vector. This computation

can be done for all pixels efficiently on modern parallel ar-

chitectures, since it maps to the product of the same matrix

(L−1diag[κ̂c]
−1) with all the intensity vectors v(p).

Then, we compute per-patch luminance and normal es-

timates by “projecting” their set of pixel-wise values to the

constant-albedo and polynomial depth models respectively.

We set τm:c simply to the mean of the corresponding pixel

luminances {τc(p), p ∈ Ωm} in the patch. For the nor-

mals, we find the best fit of the pixel-wise normals to the

polynomial model for each patch

am:c = (GTG)−1GT n0
m:c, (8)

where n0
m:c is the concatenated gradient vector for patch

Ωm formed from the per-pixel normals n̂0
c(p), p ∈ Ωm.

We then set n̂m:c(p) to the unit normals corresponding to

nm:c = Gam:c. These computations can also be carried out

efficiently, in this case parallelized across patches.

Using these estimates and corresponding errors sm:c, we

construct a global histogram H[l, c] over the full discrete

candidate albedo set using clipped values of these errors as

H[l, c] =
∑

m

I[τm:c =q τl]×max (0, hmax − sm:c) , (9)

where Iq[τm:c =q τl] is one when the quantized value of

τm:c equals τl, and zero otherwise. Every patch thus makes

a contribution to only one luminance bin for every chro-

maticity value. H[l, c] represents a soft aggregation of the

number of patches that have low rendering errors (as per

hmax) for each albedo. Using non-maxima suppression, we

construct our global albedo set {κk = τk × κ̂k}Kk=1 as the

K highest-valued peaks in the histogram H[l, c].

Local Shape Distributions We then recompute normal

estimates and rendering error scores for all patches, now

with respect to only the global albedo set. We follow a simi-

lar procedure as above. We iterate over the chromaticities of

the albedos in the global set, and for each κ̂k, we compute

pixel-wise luminance and normal values τk(p) and n̂0
k(p)

using (7). We compute the per-patch surface coefficients

am:k, and therefore the corresponding normals n̂m:k(p),
from n̂0

k(p) using (8). Our local distributions are then K
pairs {am:k, sm:k}Kk=1 of these surface coefficients, along

with rendering scores sm:k = Sm(κ̂k × τm:k, n̂m:k). Here,

we set τm:k by projecting the mean, of the per-pixel lumi-

nances {τk(p), p ∈ Ωm}, to the bin corresponding to the

luminance τk of the kth albedo in the global set.

4.2. Global Shape Estimation

To form our final shape estimate, we have to find a single

shape estimate for each patch Ωm—by deciding between

selecting one of multiple shape candidates, or ignoring them

all together to account for patches with varying albedo—

and harmonize normal estimates at each pixel p from mul-

tiple overlapping patches that include it.

We do this by employing an alternating iterative algo-

rithm to minimize a consensus-based cost function similar

to [15]. This cost function is defined over the pixel-wise

depth gradient map n(p), and auxiliary variables {am} that

correspond to per-patch shape coefficients, as

L(n(p), {am}) =
M
∑

m=1

[

λ ‖nm −Gam‖2

+min

(

γ,min
k

(

sm:k + ‖G(am − am:k)‖2
)

)

]

, (10)

where nm is formed from concatenating n(p), p ∈ Ωm.

The first term of the cost function essentially requires the

gradients n(p) at each pixel to be close to their predicted

estimates Gam from all patches Ωm ∋ p that include

that pixel. The second term enforces fidelity between the

per-patch shape coefficients am and the local distributions

{(sm:k, am:k)}. λ is a scalar parameter that controls the

relative contribution of these two terms.

The fidelity of am to each candidate shape am:k is de-

fined as the sum of the squared error between them and the

shape’s score sm:k. (10) considers the best cost across the

different candidates for each patch, and to be able to re-

ject distributions for patches with varying albedo, applies a

threshold γ. When costs of all candidates are beyond this

threshold, am no longer depends on any of the candidate

shapes {am:k}. Note “outlier” handling in our setup serves

a different purpose than it did in [15]. While we ignore

the shape candidates for an outlier, we still enforce the local

polynomial shape model. Thus, we only reject the constant-

albedo assumption. Our higher-degree polynomial shape

model encodes integrability, not smoothness like in [15],

and enforcing it even in outlier patches allows us to avoid a

separate global integrability term in the objective in (10).

We minimize (10) using an iterative algorithm that alter-

nates between optimizing with respect to n(p) and to {am},

while keeping the other fixed. We also find it useful to be-

gin the iterations with a smaller value of λ, and increase

it by a constant factor at each iteration till it reaches its

final value. We begin by initializing each am to simply

the candidate shape am:k with the smallest value of sm:k.



Then, in each iteration, we first minimize with respect to

the gradient map n(p) keeping {am} fixed. This is achieved

simply by setting each n(p) to the mean of its estimates

{(Gam)(p)}m:Ω∋p from all patches containing p.

The second step at each iteration minimizes (10) with

respect to {am}, which can be done independently for each

am. We first compute a set of auxiliary coefficients and

scores based on n(p) as ām:0 = (GTG)−1GTnm, s̄m:0 =
γ, and for k ∈ {1, . . .K}, ām:k = (1 + λ)−1(am:k +
λam:0), s̄m:k = sm:k + ‖G(ām:k − am:k)‖2. Each am is

then set to the ām:k among k ∈ {0, . . .K} (i.e., including

the outlier case ām:0) for which s̄m:k is lowest.

5. Experimental Results

We now report quantitative and qualitative results on the

performance of the proposed method on a large number of

synthetically generated surfaces, as well as on acquired im-

ages of real objects. In all experiments, we use fully over-

lapping sets of 8 × 8 patches. For the polynomial shape

model, we choose degree D = 5, and for albedo discretiza-

tion, we choose 4096 bins for chromaticity—64 each over

elevation and azimuth of S2
+—and 100 bins for luminance,

and set τmax = 3 for observed intensities in the range [0, 1].

For local inference, we consider a global albedo set of

size K = 100, and set the histogram error threshold hmax to

10−4 for the synthetic surface renderings in Sec 5.1 below,

and to a higher value of 10−2 for the real acquired images in

Sec. 5.2 to account for higher noise and other non-idealities.

For global inference, we set the outlier threshold γ = 4.

We run alternating minimization starting with λ = 2−64,

increasing it by a constant factor of
√
2 at each iteration till

it reaches 256, for a total of 145 iterations.

5.1. Synthetic Images

We synthetically render 1000 randomly generated sur-

faces to conduct a systematic quantitative evaluation of our

method’s performance. Each image is of size 256×256 pix-

els, and is rendered using randomly generated albedo and

depth maps and a common chosen lighting L. The albedo

map is generated by dividing the image into four equal trian-

gles, and picking a random albedo vector per triangle. The

surface is generated by first choosing a random base planar

(ensuring that it is not in shadow), and adding zero-mean

Gaussian depth perturbations—generated first at a coarser

scale (of 16 × 16) and smoothly up-sampled to 256 × 256.

Examples of these random surfaces are in Fig. 2 (left).

We render all surfaces using (1) with moderate 0.1%
Gaussian observation noise, simulating attached shadows

by clipping negative values of LT n̂ to zero. We run our

full algorithm on each image, and compute angular errors

between estimated and true surface normals. Figure 2 (cen-

ter) shows a cumulative distribution of these errors across

all pixels in all surfaces—summarizing our estimation ac-

curacy over a diverse set of albedo-geometry combinations.

We see that our method is usually able to recover accu-

rate surface geometry, with a median error of 6.5◦. As the

albedo boundaries in all our rendered images are aligned,

we are also able to visualize how performance varies in

pixels close to these boundaries. Figure 2 (right) shows

location-wise median errors, i.e. median across surfaces of

errors at each pixel location. As expected, we see that er-

rors are higher near albedo boundaries. However, the range

of this variation is small—from roughly 5◦ within constant

albedo regions to a high of 9◦ at albedo “corners”.

5.2. Real Images

We evaluate our method on four real objects that were

single-shot imaged by a Canon EOS 40D camera under

our RGB photometric stereo setup. We place color filters

in front of three LED lights, with filters chosen to create

monochromatic lights—we ensure that in a scene lit by, say,

only the red light source, green and blue camera intensities

are nearly zero. Lighting directions L are estimated with a

chrome sphere. We work with RAW camera images, where

color channels are multiplexed using a Bayer pattern. To

avoid artifacts from demosaicking, we blur the image with

a one pixel std. Gaussian filter for anti-aliasing, and then

down-sample to form a single RGB pixel for every 2 × 2
Bayer block. We compute an object mask against the dark

background by simple thresholding, and only run inference

within this mask. We also white-balance each image (di-

viding each channel by its mean intensity), so that the dis-

cretization of our albedo search space is uniform.

We also capture images of each object from the same

camera, now under different directional white light sources,

and run robust classical photometric stereo to get aligned

ground truth normal and albedo maps. Moreover, for com-

parison, we use the known albedo and single-shot RGB im-

age to simulate three separate captures under white lights

with the same exact directions as our setup. We estimate a

set of surface normals through classical photometric stereo

on these images. Since errors in these normals are due only

to non-idealities like shadowing, inter-reflections, specular-

ities, etc., they represent an upper bound on the performance

under our more ambiguous single-shot setup.

Figures 3 and 4 show our results on these real objects,

and Fig. 5 shows alternate views rendered using depth maps

obtained by integrating our estimated normals. Our method

produces high-quality surface normal estimates in most re-

gions, even though the objects feature natural albedo varia-

tions that deviate from our strict piecewise constant model.

This highlights the robustness of our method, and its practi-

cal utility. Indeed, we find that most of our errors are in re-

gions where three-source photometric stereo also fails (e.g.,

due to shadows), although these errors are exaggerated in



Figure 2. Quantitative Evaluation on Synthetic Surfaces. We evaluate our method on synthetically rendered images of a thousand randomly

generates surfaces (left). We show overall statistics of estimation error (center), as well as the spatial distribution of these errors, which

indicates that errors are only slightly higher near albedo boundaries (right).

Figure 3. Results on single-shot captured images of real objects. We show estimated normal maps, and corresponding errors, for our

method as well as that of Barron & Malik [2]. As comparison, we also show results for running classical photometric stereo on three

full-color images captured under the same lighting directions L (simulated using known ground-truth albedo). Errors in these estimates are

due to shadowing and other non-idealities, and thus they provide an upper-bound to our performance.

our estimates—both in magnitude and spatial extent. Also

note the errors in the base and dark spots of the “giraffe” in

Fig. 4. The albedo values in these regions have roughly con-

stant chromaticity, but continuously changing luminance—

and happen to provide a plausible, but incorrect, solution

under the piecewise constant albedo model.

We also include results from [2] in Figs. 3 and 4, provid-

ing it our calibrated lighting environment, but without using

contour information. We see that [2] recovers only a coarse

estimate of surface geometry, with much less detail than our

method. Moreover, it takes 20 mins. for a 800× 730 image

with 55% valid pixels on a 6-core 3.5GHz CPU. In contrast,

our method only takes 160 secs. with a Titan X GPU.

The source code for our implementation, along with

data, is available for download at the project website at

http://www.ttic.edu/chakrabarti/rgbps/.

6. Conclusion

In this paper, we presented a single-shot system for re-

covering the shape of objects with spatially-varying albedo,

http://www.ttic.edu/chakrabarti/rgbps/


Figure 4. Results on real objects (continued).

Figure 5. Simulated alternate views using integrated depth maps from our normal estimates.

using a calibrated RGB-PS setup for acquisition. Infer-

ence was based on a piece-wise constant model for surface

albedo. We characterized the shape information in RGB-PS

observations under this model, showing that exact recovery

is possible under idealized conditions. Then, we described a

robust and efficient inference algorithm that achieved high-

quality results on complex real-world objects.

Our system’s ability to perform accurate single-shot

shape recovery means that it can be used to reconstruct dy-

namic, deforming objects from a sequence of video frames–

which previously had required multi-view setups [12]. Be-

yond simply generating stand-alone shape estimates from

each image, in future work we will explore efficient ways

to incorporate temporal constraints across frames. We be-

lieve this can allow high-quality time-varying reconstruc-

tions from monocular video, for example, by ameliorating

the effects of shadows—regions that are in shadow in some

frames may be lit in others. We are also interested in extend-

ing our method to leverage additional information, like con-

tours, when available, and incorporating non-Lambertian

reflection models for complex materials.
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