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Geometric priors for depth inference
Here, we describe the new terms we incorporate at inference time
to infuse geometric information into our estimated depth.
Camera model. We compute a simple pinhole camera (focal
length, f and camera center, (cx0 , c

y

0)) and extrinsic parameters
from three orthogonal vanishing points [Hartley and Zisserman
2003] (obtained in the “Geometric reasoning” step). We use this
camera model as our projection operator, which is necessary for
computing surface normals from depth:

K =

2

4
f 0 cx0
0 f cy0
0 0 1

3

5

Surface normals from dense depth. First, it is important to noise
that we can recover a surface normal at each pixel given dense
depth. We could use plane fitting to estimate the surface orienta-
tion, but for computational reasons, we use a local operator (N :
R ! R3) that considers the change in nearby depth values:
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where ⇥ is the cross product operator. Intuitively, V
x

and V
y

are
estimates of unique surface tangents, and their normalized cross
product is thus the surface normal.
Manhattan world prior. Under the Manhattan World assumption,
patches of a scene should always be oriented along one of the
three dominant directions. These three directions are defined by
the vanishing points we detect, which encode a rotation matrix
R = (R
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)T defined as the rotation that takes the iden-
tity to the set of rescaled, unprojected vanishing points (R ⇤ I /
K�1[vp
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, vp
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]). To enforce such a prior, we add a penalty
for surface normals not lying in parallel or perpendicular to one
of these three directions:
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The function pp is a negated and translated absolute value function
that is small if the input vectors are either parallel or perpendicular,
and large otherwise.
Orientation constraints. We also have a good idea of the orien-
tation of some surfaces in the scene from our geometric reasoning
step, and we incorporated this knowledge as a soft constraint on
surface normals in regions which we have high confidence of the
surface orientation. Let O be the set of pixels for which we can
confidently predict surface orientation, and Omap

i

is the predicted
orientation at the ith pixel:
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3D smoothness. In real scenes, not all planes will align with one of
the three dominant directions. So, we incorporate a simple smooth-
ness prior, but we enforce smoothness in 3D rather than in the im-
age plane. We encourage nearby normals to be pointing in the same
direction, unless there are strong edges in the input image (assumed
to be potential discontinuities in the normal field). We model this
term as
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where r
x

and r
y

are horizontal and vertical gradients in the
image domain, and sx = (1 + e(||rx

I||�0.05)/.01)�1 and sy =
(1+ e(||ry

I||�0.05)/.01)�1 are soft thresholds (sigmoidal functions)
of input image (I) derivatives.
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Input Khan et al. [2006] Ours Karsch et al. [2011]

Fig. 1. Comparison of several techniques for estimating illumination from a single image. From left to right: the image-wrapping method of Khan et al. [2006],
and our method. These methods are all fully automatic, compared to the semiautomatic method of Karsch et al. [2011] (right). Our automatic method is able
to produce more visually appealing results than existing automatic approaches, and is comparable to methods which require a good deal of user interaction.
Best viewed in color at high-resolution.
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Fig. 2. Several results comparing our single image, geometric-based depth algorithm to the original Depth Transfer algorithm [Karsch et al. 2012]. Each
result shows the input image above, followed below by our estimated depth and surface normals, and the estimated depth and surface normals using Depth
Transfer on bottom. Surface normal images are computed by mapping the absolute value of each normal (per pixel) to the RGB channels respectively (normals
are first globally rotated such that a normal pointing in any of the three dominant scene directions is either red, green, or blue). Notice that the addition of
geometric-based priors significantly improve the estimated depth, and allow for piecewise planar reconstructions.

Fig. 3. In some cases, our light intensity optimization can fail (middle), but a user can manually correct these intensities on the fly using our interface (given
that source positions have been estimated with moderate accuracy, and only the intensity has been misestimated).
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Fig. 4. Additional results. Our method achieves varying degrees of quality, but is automatic and can be used for many types of images.
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Fig. 5. Additional results. Our method achieves varying degrees of quality, but is automatic and can be used for many types of images.
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Fig. 6. Example classes from the SUN360 panorama dataset [Xiao et al. 2012]. We manually annotate light sources for several images in each class (top),
train a classifier to predict light source location and distance. We then use this classifier to annotate all other images in the SUN360 dataset (bottom). Blue
annotations indicate a “near” source (1-5m), and teal indicates a “medium” proximity; most sources fell into these categories for indoor scenes. Our classifier
is typically robust to false positives like strong specular reflections and shafts of light; however, several true light sources are undetected by our classifier.
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Threshold (>80%) Threshold (>90%) Light classifier

Fig. 7. Comparison of thresholding an image to detect light sources (left and middle) versus our light classification method. In many scenes, thresholding
poses issues because of bright image points that are not truly sources of illumination, and also because tonemapping can mis-represent the true radiance values
in a photo. Our classifier is typically robust to false positives like strong specular reflections and shafts of light (top and middle), and has success in detecting
light sources that are not saturated (bottom). Light source detections are displayed in red (unknown distance from camera) and teal (automatically classified as
“medium” distance); with thresholding, we cannot estimate how far the light is from the camera, whereas our classifier predicts distance as one of four discrete
labels (close, medium, far, and infinite).
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Fig. 8. Precision-recall and ROC curves for our light classifier and thresholding baseline. Our classifier steadily outperforms simple thresholding methods.
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Table I. Light Detection Evaluation
Intersection / Union Distance

Panorama class >80% >90% Our classifier accuracy

cave 38.52 39.41 48.85 81.49
church 15.39 13.41 27.68 99.10
corridor 28.63 28.55 44.68 81.81
hotel room 10.78 14.87 31.48 97.30
living room 16.53 15.83 38.81 88.65
lobby atrium 26.60 25.93 42.67 97.06
museum 20.49 20.58 34.96 80.77
old building 41.42 46.77 73.46 93.67
restaurant 26.88 20.67 42.79 99.55
shop 12.72 26.34 33.19 96.98
subway station 8.71 14.31 31.26 85.25
theater 14.35 15.22 26.66 96.80
train interior 32.57 25.08 56.04 98.92
workshop 26.59 31.05 46.83 99.36

all 22.87 24.14 41.38 92.62
Quantitative analysis of our light detection algorithm. For five panoramas in each
class, we hand-label the pixels/directions which contribute significant light to the
panorama, including the distance the source is from the camera (labelled as one of
the following categories: near, medium, far, infinite). From these annotations, we
build a light classifier, and report the classification accuracy of our classifier and
baseline classifier (thresholding the image at the {80,90}th intensity percentiles).
We report the intersection over union (true positive rate divided by total number of
detections) for these methods; for each class, our detector significantly outperforms
the baselines. Our classifier also estimates the distance of the source, and achieves
distance classification accuracy much higher than chance.

Table II. Depth Error on Synthetic Study Scenes
Lighting Our method [Karsch et al. 2012]

bedroom
A 0.0344 0.0383
B 0.0394 0.0421
C 0.0376 0.0398

bedroom mean 0.0371 0.0400

corridor
A 0.0478 0.0442
B 0.0443 0.0502
C 0.0443 0.0502

corridor mean 0.0455 0.0489

table
A 0.0290 0.0249
B 0.0489 0.0491
C 0.0481 0.0482

table mean 0.0420 0.0407

outdoor
A 0.0275 0.0260
B 0.0319 0.0300
C 0.0525 0.0515

outdoor mean 0.0373 0.0359

mean over all scenes 0.0405 0.0414
We compute depth error as the pixel-wise norm (squared) between two depth
maps, up to a scale and translation (since the depth from the synthetic scenes
and our estimates do not have consistent units). Formally, the depth in this
table is computed as min

s,t

||D
gt

�sD
est

�t||2, where D
gt

is the ground
truth depth, and D

est

is the depth estimated by one of the above methods.
Quantitatively, we see that our depth maps are slightly better than the method
of Karsch et al. over all images.

Table III. Depth Error on Make3D Dataset (Outdoors)
Method rel log10 RMS
Make3D [Saxena et al. 2009] 0.370 0.187 N/R
Semantic Labels [Liu et al. 2010] 0.375 0.148 N/A
✓-MRF [Li et al. 2011] N/R N/R 15.0
Depth Transfer [Karsch et al. 2012] 0.361 0.148 15.1
Depth Transfer+GP (ours) 0.352 0.149 15.3

Errors computed using the standard split (400 training images, 134 test). Our
method achieves state of the art results for relative error (rel), and performs com-
parably to other methods for log base 10 and root mean squared error.

Table IV. Depth Error on NYUv2 Dataset (Indoors)
Method rel log10 RMS
Depth Transfer [Karsch et al. 2012] 0.382 0.137 1.2
Depth Transfer+GP (ours) 0.362 0.133 1.3

Errors computed on the NYUv2 dataset [Silberman et al. 2012] containing 1449
indoor images. For evaluation, 100 images were randomly selected for testing;
the rest were used for training.

A1 A2

B1 B2

C1 C2
Fig. 9. Three example trials from our user study. In the study, users were
shown two side-by-side pictures; one photograph is real, and the other has
synthetic objects inserted into it. Users were instructed to choose the picture
from the pair that looked the most realistic. For each row, which of the pair
would you choose? (Answers written below; best viewed in color at high-
resolution.)

A1:synthetic,A2:real;B1:real,B2:synthetic;C1:real,C2synthetic
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Table V. Absolute Illumination Error on Synthetic Study Scenes
Condition Our method Matching [Khan et al. 2006] [Lalonde et al. 2009] Lighting notes

bedroom
A 0.1379 0.1052 0.0652 - sunlight through window
B 0.1774 0.1492 0.1031 - overcast skylight with room lamps
C 0.0360 0.0562 0.0601 - indoor lamps only

bedroom mean 0.1171 0.1035 0.0761 -

corridor
A 0.1625 0.3115 0.2158 - sunlight through windows
B 0.1142 0.2343 0.1285 - dusk sunlight
C 0.1563 0.1304 0.0470 - overhead diffuse lights; night time

corridor mean 0.1443 0.2254 0.1304 -

table
A 0.0521 0.0587 0.0741 - overhead lamps only
B 0.0821 0.2202 0.1594 - diffuse light from a distance
C 0.1229 0.1382 0.0898 - overhead + distant lights, cool hue

table mean 0.0857 0.1390 0.1078 -

outdoor
A 0.0736 0.1709 0.0725 0.1746 direct sunlight
B 0.0711 0.1220 0.1061 0.2684 overcast
C 0.0701 0.2270 0.1062 0.2004 dusk sunlight

outdoor mean 0.0716 0.1733 0.0949 0.2145

mean over all scenes 0.1047 0.1603 0.1023 0.2145
We compute error by rendering nine randomly placed objects (with varying materials; see Fig 10) into two scenes (e.g. a ground truth synthetic scene, and the
corresponding scene produced by our method). The final error in each cell is computed as the absolute pixel-wise difference between the two renderings, averaged
over all nine objects/pixels. Interestingly, but perhaps not surprisingly, the results are not very consistent with the people’s preferences in our “synthetic image” user
study – for example, on average, the method of Khan et al. achieves slightly lower error than our method, but in the user study, our method saw nearly a 5% gain
(over the method of Khan et al.) in confusion.

Fig. 10. The nine shapes/materials (from the MIT intrinsic dataset [Grosse et al. 2009]) used to measure quantitative illumination error (in Fig V), and also
used for our training loss metric (Sec 5.2 in the main paper). In the above images, the objects on the left were rendered into the illumination on the right
(corresponding to our estimated illumination for the “bedroom A” scene; see Fig 11). Each of the objects are placed randomly in the scene so that no part of
the object is occluded or out-of-view, then rendered with a given illumination environment and cut out from the background (error is only computed on pixels
occupied by the object). Each object contains one of LuxRender’s preset, physically based materials (gold, glossy, matte, velvet, etc).
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bedroom

Lighting configurations

A

B

C

True depth

Estimated depth

True reflectance

Estimated reflectance

Fraction of times subjects chose a synthetic
result over the true insertion (bedroom scene).

Condition N ours Khan match
direct light 99 .434 .480 .521
diffuse light 345 .443 .453 .291
large coverage 444 .441 .459 .343
small coverage 0 - - -
total 444 .441 .459 .343

True illumination Estimated illumination

Fig. 11. Automatic scene estimates compared to the true depth, diffuse reflectance and illumination for the “bedroom” scene.

Ground truth Our result Simple matched lighting [Khan et al. 2006] lighting

Fig. 12. Example results from our user study. New objects have been inserted into the synthetic scene using the approaches tested in our study.
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corridor

Lighting configurations

A

B

C

True depth

Estimated depth

True reflectance

Estimated reflectance

Fraction of times subjects chose
a synthetic result over the
true insertion (corridor scene).

Condition N ours Khan match
direct light 197 .335 .242 .355
diffuse light 247 .389 .250 .231
large coverage 296 .338 .216 .243
small coverage 148 .419 .308 .371
total 444 .365 .247 .286

True illumination Estimated illumination

Fig. 13. Automatic scene estimates compared to the true depth, diffuse reflectance and illumination for the “corridor” scene.

Ground truth Our result Simple matched lighting [Khan et al. 2006] lighting

Fig. 14. Example results from our user study. New objects have been inserted into the synthetic scene using the approaches tested in our study.
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table

Lighting configurations

A

B

C

True depth

Estimated depth

True reflectance

Estimated reflectance

Fraction of times subjects chose a synthetic
result over the true insertion (table scene).

Condition N ours Khan match
direct light 0 - - -
diffuse light 444 .324 .226 .207
large object 148 .324 .226 .257
small object 296 .324 .226 .182
total 444 .324 .226 .207

True illumination Estimated illumination

Fig. 15. Automatic scene estimates compared to the true depth, diffuse reflectance and illumination for the “table” scene.

Ground truth Our result Simple matched lighting [Khan et al. 2006] lighting

Fig. 16. Example results from our user study. New objects have been inserted into the synthetic scene using the approaches tested in our study.
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outdoor

Lighting configurations

A

B

C

True depth

Estimated depth

True reflectance

Estimated reflectance

Fraction of times subjects chose a synthetic
result over the true insertion (outdoor scene).

Condition N ours Khan Lalonde
direct light 296 .253 .192 .250
diffuse light 148 .358 .507 .221
large coverage 444 .288 .297 .240
small coverage 0 - - -
total 444 .288 .297 .240

True illumination Estimated illumination

Fig. 17. Automatic scene estimates compared to the true depth, diffuse reflectance and illumination for the “outdoor” scene.

Ground truth Our result Simple matched lighting [Khan et al. 2006] lighting[Lalonde et al. 2009] lighting

Fig. 18. Example results from our user study. New objects have been inserted into the synthetic scene using the approaches tested in our study.
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86.8%

76.3%

78.9%

55.3%

Fig. 19. We conducted a preliminary study to measure how realistic our
synthetic study scenes appeared to people. In the study, pairs of real and
synthetic images were shown to subjects (rows in the above figure), and
subjects were asked to choose the image they felt looked most realistic. The
percentage next in each row shows how often users preferred the synthetic
image to the actual, real photo. Averages were obtained with 38 subjects (50
in total, but 12 were discarded either because the subject failed the in-test
qualification, or indicated he/she had seen one or more of the photos prior
to the study). All real photos are shown on the right for demonstration, but
placement/ordering was permuted in the study.
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Fig. 20. Some of the most and least realistic results from our study (in
terms of how many times they were confused as real). Each row shows
either the best or worst result from our method (left) or the Khan baseline
(right), indicated by the text in each row. E.g. the first row shows our best
result and the corresponding Khan result for comparison.
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H. H. 2006. Image-based material editing. In ACM SIGGRAPH.

LALONDE, J., EFROS, A. A., AND NARASIMHAN, S. 2009. Estimating
Natural Illumination from a Single Outdoor Image. ICCV .

LI, C., SAXENA, A., AND CHEN, T. 2011. ✓-mrf: Capturing spatial and
semantic structure in the parameters for scene understanding. In NIPS.
549–557.

LIU, B., GOULD, S., AND KOLLER, D. 2010. Single image depth estima-
tion from predicted semantic labels. In CVPR. 1253–1260.

SAXENA, A., SUN, M., AND NG, A. Y. 2009. Make3D: Learning 3D
Scene Structure from a Single Still Image. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31, 5, 824–840.

SILBERMAN, N., HOIEM, D., KOHLI, P., AND FERGUS, R. 2012. Indoor
segmentation and support inference from rgbd images. In ECCV.

XIAO, J., EHINGER, K. A., OLIVA, A., AND TORRALBA, A. 2012. Recog-
nizing scene viewpoint using panoramic place representation. In CVPR.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2009.


