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Abstract. Photometric stereo relies on inverting the image formation
process, and doing this accurately requires reasoning about the visibility
of light sources with respect to each image point. While simple heuristics
for shadow detection suffice in some cases, they are susceptible to error.
This paper presents an alternative approach for handling visibility in
photometric stereo, one that is suitable for uncalibrated settings where
the light directions are not known. A surface imaged under a finite set of
light sources can be divided into regions having uniform visibility, and
when the surface is Lambertian, these regions generally map to distinct
three-dimensional illumination subspaces. We show that by identifying
these subspaces, we can locate the regions and their visibilities, and in
the process identify shadows. The result is an automatic method for
uncalibrated Lambertian photometric stereo in the presence of shadows,
both cast and attached.

1 Introduction

Photometric stereo seeks to recover the geometry of a scene by analyzing ap-
pearance changes under varying illumination. In spite of being based on a crude
reflectance model, Lambertian photometric stereo is one approach that is fre-
quent used. One of the reasons for the utility of Lambertian photometric stereo
is its support of auto-calibration. In the ideal case, given a set of images under
varying, but unknown, directional lighting, it is possible to recover both a sur-
face normal field and the light source directions up to a three-parameter family
of solutions [7, 33].

Like any photometric stereo technique, uncalibrated Lambertian photomet-
ric stereo relies on inverting the image formation process. It seeks to explain
observations using combinations of light sources, surface normals, and surface
albedos; and in order to succeed, it must be able to reason effectively about which
light sources are visible to each surface point. This problem is deceptively hard
because shadowing is a non-local function of surface geometry, and heuristics for
shadow detection, such as simple thresholding, are unreliable in the presence of
albedo variations and sparse input images.

In this paper, we avoid explicit shadow detection by reasoning about illu-
mination subspaces instead. It is well-known that the set of images of a convex
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Fig. 1. Uncalibrated photometric stereo with shadows. From a sparse set of images of
a Lambertian scene (a), we identify regions that can see a common set of lights (b)
through subspace estimation. This provides per-pixel visibility and allows the recovery
of surface normals (c) and light directions up to the standard global linear ambiguity.
Integrating these normals produces a reconstruction (d) that is not corrupted by the
strong shadowing in the input images.

Lambertian surface under directional lighting spans a three-dimensional linear
subspace. It is also well-known that attached shadows and cast shadows vio-
late this subspace property, so that the image-span of a scene with shadows can
grow to a high dimension. What has not been fully exploited is that these high-
dimensional spans have useful structure. We show that the image-span of any
Lambertian scene captured under a discrete set of light sources with arbitrary
shadowing can be decomposed into a set of three-dimensional subspaces. We
refer to these as visibility subspaces because they correspond to sets of surface
points that can see a common set of lights.

Given a sequence of uncalibrated photometric stereo images of a Lambertian
object, the visibility subspaces can be automatically identified—without knowl-
edge of the lighting directions—using well-known subspace clustering techniques.
We show that once these subspaces are identified, the surface is partitioned, the
exact set of lights that is visible to each region can be computed, and the surface
and light directions can be reconstructed up to the usual global linear ambiguity.

2 Related Work

Photometric stereo can produce per-pixel estimates of surface normals and is
a common technique for scene reconstruction. Originally developed for Lamber-
tian surfaces and calibrated directional lighting [29], photometric stereo has been
generalized to handle uncalibrated directional lights [15], specular and glossy
surfaces [20, 21, 14], symmetric reflectance functions [1, 19, 25], reflectance mix-
tures [18], and uncalibrated environment map lighting [4]. Despite these general-
izations, Lambertian photometric stereo remains useful because of its simplicity
and allowance for uncalibrated acquisition, as well as being an analytical “step-
ping stone” for developing more comprehensive techniques.
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In order to obtain accurate reconstructions with any photometric stereo tech-
nique, Lambertian or not, one must identify shadowed regions in the images.
Most approaches for isolating shadows rely on using enough light sources such
that every surface point is illuminated by at least two or three of them, and then
detecting and discarding intensity measurements having low values. The number
of images may be as few as three or four [10, 3, 16] but can also be many more [31,
30]. Since these methods detect shadows by analyzing the intensities at individ-
ual pixels, they can be unreliable when a surface has texture with low albedo,
and when cast shadows prevent some surface points from being illuminated by
a sufficient number of lights.

An alternative approach is proposed by Chandraker et al. [8]. They estimate
which light sources can be seen by each surface point using a Markov random
field in which the per-pixel “data term” is based on Lambertian photometric
stereo and the “smoothness term” acts to encourage spatial coherence. This
approach requires that the light directions are calibrated and known, and like
the methods above, relies on reasoning about the intensities at each pixel. Our
approach also derives from Lambertian photometric stereo, but unlike [8], does
not require the light sources to be calibrated. Moreover, instead of reasoning
about per-pixel intensities, it reasons about illumination subspaces.

Our work is also related to the problem of characterizing the structure of the
set of a scene’s images. There exist bounds on the dimension of the image-span
of convex Lambertian scenes under directional lighting [23] and environment
map lighting [5, 22], as well as convex scenes with a single arbitrary reflectance
function [6] and mixtures of reflectance functions [13]. All of these bounds assume
the scene to be convex so that cast shadows are absent. As a by-product of our
analysis, we derive a complimentary bound that accommodates cast shadows
and is valid for any Lambertian scene illuminated by a finite set of directional
lights.

Finally, our work leverages insight from subspace clustering techniques, such
as Generalized Principal Component Analysis (GPCA) [28] and Local Sub-
space Affinity (LSA) [32], that have been developed for motion segmentation.
In our case, we perform subspace clustering using RANdom SAmple Consensus
(RANSAC) [12, 26, 27]. This is quite different from a previous use of RANSAC
in photometric stereo [17], which was aimed at identifying contour generators
within an object’s visual hull.

3 Visibility Subspaces

We begin with background and notation. For a Lambertian surface, the radiance
from a surface point with normal N ∈ S2 and albedo ρ, illuminated with direc-
tional lighting L (i.e., with direction L/||L|| ∈ S2, and magnitude ||L||), is given
by I = max(0, ρLTN). In the absence of shadows, we know that LTN > 0, and
the image observations at m surface points illuminated by n light sources can
be arranged as an n ×m data matrix I that is the product of the 3 × n light-
ing matrix L = [L1, L2, · · · , Ln] and the 3 × m albedo-scaled normals matrix
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N = [ρ1N1, ρ2N2, · · · , ρmNm]:
I = LTN. (1)

L and N are at most rank-three, and therefore, so is matrix I [29, 23].
If the scene is imaged under at least three non-coplanar light sources and

these sources are calibrated and known, the surface normals can be estimated
from noisy image intensities as N = (LT )+I, where (·)+ is the pseudo-inverse
operator [29]. If the light sources are not calibrated, we can factor I using singular
value decomposition (SVD) to recover the normals and lights using a rank-three
approximation [15]:

I = UΛVT , L̂T , U3Λ
1
2
3 , N̂ , Λ

1
2
3 VT

3 . (2)

This determines the normals up to a linear 3× 3 linear ambiguity such that:

LT = L̂TA,N = A−1N̂. (3)

for some non-singular matrix A. This ambiguity can be resolved if light source
intensities or surface albedos are known [15]. It can also be resolved up to the
three-parameter generalized bas-relief ambiguity by enforcing an integrability
condition on the normal field [7, 33].

Up to this point we have assumed the absence of cast and attached shadows,
or equivalently, that every light source is visible to every surface normal. Now
suppose that shadows exist, and consider the following toy example. A scene is
partitioned into two uniform-visibility regions S1 and S2 that project to m1 and
m2 pixels respectively. The scene is imaged under a set of n light directions that
can be grouped into two (potentially) overlapping subsets L1 and L2, such that
all of the lights L1 are visible to all points in S1, and all of the lights L2 are
visible to all points in S2. Let the number of lights in these overlapping subsets
be denoted by n1 and n2, and since they might overlap, we have n1 + n2 ≥ n.

Now, the data matrix I can be permuted so that the first m1 columns corre-
spond to S1 and last m2 columns to S2, and the first n1 rows correspond to L1

and last n2 rows to L2 with their shared lights lined up in the middle. Then, the
observation matrix can be written as two sub-matrices, and if we denote by Nk

the collection of surface normals in region Sk, the matrix can be factored as:

I = [ I1 | I2 ] =

[
LT
1

0T
n−n1

0T
n−n2

LT
2

] [
N1 0m2

0m1
N2

]
, (4)

with 0x representing a matrix of zeros with size 3 × x. The form of this fac-
torization shows that while the row-space of I spans six dimensions, it actually
consists of two rank-three subspaces corresponding to the two disjoint surface
regions with different visibilities.

To generalize this to multiple regions with arbitrarily overlapping visibilities
(i.e., sets of visible light sources), we define the visibility vector of region Sk to
be the binary vector Vk = [vk1, vk2, · · · , vkn], such that vki = 1 if light source Li

is visible to all the points in Sk and vki = 0 otherwise. The light sources visible
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to region Sk can then be expressed (with a slight change in notation from Eq. 4)
as

Lk = L⊗ Vk, (5)

where ⊗ represents the element-wise Hadamard product applied to every row of
the lighting matrix. As above, we can then factor the observation matrix for a
scene with s distinct visibility regions as:

I = [ I1 | I2 | · · · | Is ] = [ LT
1 | LT

2 | · · · | LT
s ]


N1

N2

. . .

Ns

 , (6)

where Nk is the surface normal matrix corresponding to region Sk.

Thus, the observation matrix is made up of multiple subspaces, and we call
these visibility subspaces because they correspond to regions in the scene that
each have a consistent set of visible lights. Clearly, each subspace is at most rank-
three, and the row space of a scene with s visibility subspaces has dimension at
most 3s. This leads us to the following:

Proposition. The set of all images of a Lambertian scene illuminated by any
combination of n directional light sources lies in a linear space with dimension
at most 3 · 2n.

Proof : A scene illuminated by n light sources will have at most 2n regions with
distinct visibility configurations. The images of each region span at most a three-
dimensional space, so the dimension of the image-span of the entire scene is at
most 3 · 2n.

This result is complementary to previous work that has established bounds
on the dimensionality of scene appearance. Belhumeur and Kriegman [6] showed
that the images of a scene with an arbitrary uniform BRDF, and illuminated
by distant (environment map) lighting, lie in a linear space whose dimension is
bounded by the number of distinct surface normals in the scene. Garg et al. [13]
generalized this to spatially-varying reflectances that can be expressed as a linear
combination of basis BRDFs. However, these results apply only to convex scenes
without attached or cast shadows. In addition, these results assume that there are
a finite number of normals in the scene to derive a bound on the dimensionality
of scene appearance under arbitrary directional (environment map) lighting. In
contrast, our analysis provides bounds on the appearance of a Lambertian scene
with an arbitrary number of normals but illuminated by a finite number of light
sources, and allows any form of shadowing.

In general, we do not know the visibility subspaces of a scene a priori, and
we cannot permute the rows and columns of the observation matrix to directly
obtain the factorization in Eq. 6. However, as we show next, we can identify the
subspaces automatically using a subspace clustering technique.
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4 Estimating Visibility Subspaces

RANSAC [12] is a statistical method for fitting models of known dimensions to
data with noise and outliers. While RANSAC is traditionally used to discard
outliers from a dataset, we follow [27] and use it to cluster subspaces. In this
context, it can be seen as an alternative to other subspace-estimation techniques,
such as GPCA [28] and LSA [32].

Each visibility subspace of the scene is contained in a three-dimensional
space. If we randomly choose three surface points that happen to be in the
same region Sk, the light estimates L̂k that we obtain by factoring the image
intensities at these three points (using Eq. 2) will accurately explain the intensi-
ties for all pixels in Sk. Thus, we expect a large number of “inliers”. (Of course,
there will be outliers as well because the points in the remainder of the scene
will not have the same set of visible lights, and projecting their intensities onto
L̂k will produce large errors.) Conversely, if we happen to choose three scene
points that are in different regions, the light directions obtained by SVD will be
unlikely to accurately explain the intensities at many other scene points, and we
expect the number of inliers to be small. These observations suggest the following
algorithm:

1. Choose three pixels at random and factor their intensities as I3 = L̂T
3 N̂3.

2. Use lights L̂3 to estimate the normal at all the surface points as N̂i =
(L̂T

3 )+Ii.
3. Compute the per-pixel error of the estimated lights and normals as Ei =
||Ii − L̂T

3 N̂i||2.
4. Mark points with error Ei < ε as inliers and recompute the associated opti-

mal lighting L̂k using intensities for all inliers.
5. Repeat steps 1 through 4 for t iterations, or until a sufficiently large set of

inliers has been found. During these iterations, keep track of the largest set
of inliers found.

6. Mark the largest set of points that are inliers as a valid visibility subspace
Sk with associated lighting basis L̂k. Remove these inliers from the point
set, and repeat steps 1 to 5 until all visibility subspaces have been recovered.

This procedure samples the points in the scene to find three points that
belong to the same visibility subspace. Each time the sampling is successful, as
measured by the number of inliers in Step 4, it extracts the subspace and removes
it from the set of unlabeled points. The algorithm does not depend on the scene
geometry or the lighting directions; it depends only on the rank-three condition of
any visibility subspace. The result of the procedure is the set of per-pixel surface
normals N̂, the per-pixel subspace labels S, and a redundant (per-subspace) set
of estimates for the light directions {L̂k}. Note that in an uncalibrated setting,
the set of normals for each subspace and their corresponding lights L̂k are defined
up to their own linear ambiguity per Eqs. 2 and 3.

In our experiments, we use t = 1000 iterations, set the error threshold ε
according to the noise in the input images, and run the procedure until 99% of
the pixels are assigned to a valid visibility subspace. The remaining 1% of pixels
are assigned to the subspace that best explains their intensity variation.
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4.1 Degenerate Subspaces

The RANSAC-based method described above assumes that all visibility sub-
spaces have rank-three. This is valid for any region having at least three non-
coplanar surface normals, and illuminated by at least three non-coplanar light
sources. However, in general, scenes may contain rank-deficient subspaces that
corrupt the clustering. Under the assumption that every point in the scene sees
at least three non-coplanar lights (without which surface normal recovery is am-
biguous), a visibility subspace can only be rank-deficient if it has degenerate
normals: a region with coplanar normals will have rank two and a planar re-
gion will have rank one. Our task, then, is to check our recovered rank-three
subspaces to see if they are composed of smaller degenerate subspaces.

Given the form of the observation matrix factorization in Eq. 6, it follows
that a rank-three subspace can only be one of the following three types:

1. A region with a single visibility vector and non-coplanar normals (i.e., a true
rank-three subspace).

2. Two regions with distinct visibility vectors, where one region has coplanar
normals, and the other is planar (i.e., a combination of rank-two and rank-
one subspaces).

3. Three regions with distinct visibilities, each of which is planar (i.e., a com-
bination of three rank-one subspaces).

To ensure that our subspaces estimated by RANSAC are not of Type 2 or
Type 3, we test every estimated rank-three subspace by searching for embedded
rank-two and rank-one subspaces. If the number of pixels corresponding to the
smaller embedded subspaces subsume more than a fraction α of the original set
(α = 0.5 in our experiments) we relabel them as being members of a different
rank-deficient subspace.

5 Subspaces to Surface Normals

This subspace clustering identifies surface regions with uniform visibility, but
does not provide a clean visibility vector Vk (or accurate shadows) for each
region. Put another way, the non-visible entries of each L̂k are not necessarily
zero-valued. To recover the visibility vectors and refine the light matrices, we sep-
arately examine the light estimates in each subspace L̂k = [L̂k1, L̂k2, · · · , L̂kn],
and provided that the subspace is not degenerate, we set

vki = ||L̂T
ki|| > τ, (7)

with τ = 0.25 in our experiments. This simple approach succeeds because the
normals N̂k in each non-degenerate subspace span three dimensions, so the prod-
uct Iki ≈ L̂T

kiN̂k can be zero only if the light strength ||L̂ki|| is zero. Effectively,
we are able to recover the visibility for each subspace by reasoning about the
magnitude of the subspace lighting—an approach that is independent of scene
albedo and is, therefore, not confounded by texture.
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To estimate the visibility for degenerate subspaces, we first project the sub-
space lighting onto the column-space of the subspace normals before thresholding
their magnitudes. This removes the component of the lighting orthogonal to the
subspace normals that could be arbitrarily large while not contributing to the
observed intensities.

Once the visibility vector for each subspace is known, we can recover the
surface normals and reconstruct the surface. In the calibrated case, this is quite
straightforward. Since the light sources L are known, they are combined with
the visibility vectors using Eq. 5, and then the normals in every subspace are
given by:

Nk = (L⊗ Vk)+Ik , k = 1 . . . s. (8)

If the light sources are not calibrated, the situation is more complex because
the subspace clustering induces a distinct linear ambiguity in each subspace,
(i.e., LT

k = L̂T
k Ak,Nk = A−1

k N̂k, k = 1 . . . s). Recovering the entire surface up
to a single global ambiguity A, which is the best we can do without additional
information, requires that we somehow determine the transformations–one per
subspace–that map each set of normals to a common coordinate system. Fortu-
nately, this can be achieved by solving the set of linear equations:

L̂⊗ Vk = L̂kAT
k , k = 1 . . . s, (9)

where both the global lights L̂ (i.e., those defined up to a single global ambiguity)
and the per-subspace ambiguity matrices Ak are unknown. This is an over-
constrained homogeneous system of linear equations since, for n lights and s
subspaces, it contains 3ns constraints and 3n+ 9s unknown variables. To avoid
the trivial solution L̂ = Ak = 0 we set the ambiguity matrix for one reference
subspace (chosen to be the non-degenerate subspace with the largest number of
visible lights) to be the identity matrix. Accordingly, we recover the global lights
L̂ and normals N̂ up to a single 3× 3 ambiguity, which is that of the reference
subspace.

To handle degenerate subspaces in the uncalibrated case, we first solve Eq. 9
using all non-degenerate subspaces, and as long as all of the global lights are
visible to at least one of these regions, we can recover all of them. We then use
these “auto-calibrated” lights to solve for the normals in the degenerate rank-one
and rank-two subspaces using Eq. 8.

As a final step in the uncalibrated scenario, we may reduce or eliminate the
global ambiguity using additional constraints, such as integrability of the normal
field [7, 33], specular or glossy highlights [14, 11, 25], interreflections [9], or a
prior model of object albedo [2, 24]. Then, in either calibrated or uncalibrated
conditions, the estimated normals can be integrated to recover scene depth. In
this integration process, one may optionally enforce the depth constraints that
are induced by the visibility vectors and lights, and an elegant procedure for
doing so can be found in [8].
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(a) Input images

(b) True subspaces (c) Our subspaces (d) Our normals (e) Reconstruction

Fig. 2. Spheres sequence. Attached and cast shadows divide this scene into intricate
visibility subspaces (b). We are able to recover them almost perfectly (c), and estimate
the surface normals (d) and depth (e) accurately.

6 Results

We evaluate the uncalibrated instantiation of our approach on two synthetic
datasets and two captured datasets. In each case, we automatically cluster sub-
spaces, determine visibility vectors, and compute lights and surface normals up
to a global 3×3 linear ambiguity. As mentioned above, there are ways to resolve
this ambiguity, and since this is not the focus of this work, we simply do so by
manual intervention.

For synthetic examples, we evaluate the recovered normals, lights, and vis-
ibility subspaces by comparing them to the ground-truth values that are used
to synthesize the input images. For the captured examples, the “true” values
for comparison are obtained as follows. First, we acquire a dense set of cali-
brated photometric stereo images using approximately 50 different light direc-
tions. From such a dense set of calibrated images, we can robustly estimate
surface albedos, and the image intensities can be reliably thresholded to de-
tect per-pixel shadows and “true” visibilities. Then, we discard the shadowed
measurements and recover the “true” normals via calibrated Lambertian photo-
metric stereo. To make a direct comparison between this ground truth and our
results, we execute our algorithm using a small subset of the dense input images,
with the calibration information held out.

Figure 2 is a synthetic example in which the attached and cast shadows induce
intricate visibility subspaces. From the six input images, our approach recovers
the visibilities and normals almost perfectly. Figure 3 is a similar example, but
in this case, the shadows cast on the back plane create degenerate visibility
subspaces. These degenerate rank-one and rank-two subspaces are successfully
detected by our approach, and the final visibilities and normals computed from
the seven input images are again very close to ground truth. The median angular
errors in surface normals for these two examples are 0.49◦ and 0.51◦, respectively.
Note that both of these synthetic scenes have high-frequency texture and large
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(a) Input images

(b) True subspaces (c) Our subspaces (d) Our normals (e) Reconstruction

Fig. 3. Spheres and plane sequence. The shadows cast by the spheres on the plane create
degenerate subspaces (b). We are able to disambiguate them and recover the visibility
subspaces (c) and surface normals (d), and reconstruct the scene (e).

variations in albedos. These conditions often lead to poor results when using
intensity-based shadow detection from such a small number of images, but this
is not the case for the proposed method.

In the two captured datasets we consider – the frog (Fig. 4) and scholar
(Fig. 5) sequences – our algorithm was given 8 and 12 input images, respec-
tively. For each of these datasets, we compare to the “true” normals and vis-
ibilities obtained from densely-sampled calibrated images as described above.
We also compare the normals to those obtained using calibrated Lambertian
photometric stereo applied to the same smaller set of (8 and 12) images that
are available to our algorithm. We give this algorithm access to both the cali-
brated light directions as well as the ground truth visibilities. We refer to these
normals as the “best calibrated” normals because they can be interpreted as cali-
brated Lambertian photometric stereo supplied with “perfect” shadow detection,
or equivalently, as the best-possible result from a calibrated shadow-detection
method, such as [8, 30] applied on this small set of input images.

The input images have significant cast and attached shadows, and they ex-
hibit non-idealities such as mutual illumination and slight specularity. Despite
this, our method does reasonably well at locating the visibility subspaces (and
shadows) from a small number of images. The median angular errors in the esti-
mated normals (relative to the ground truth) are 7.44◦ and 4.45◦ for the frog and
scholar datasets, respectively. The largest errors are made in regions with few
non-shadowed measurements and where mutual illumination is most significant.
This is not unique to our approach, however, and the errors from calibrated
Lambertian photometric stereo with perfect shadow detection have a very sim-
ilar structure. This suggests that our approach, which automatically handles
shadows and is uncalibrated, introduces limited additional errors compared to
an ideal calibrated algorithm.
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(e) Our subspaces (f) Our normals (g) Reconstruction (h) Our error

Fig. 4. Frog dataset. Reconstruction results from sparse input images (shown in Fig. 1).
Despite slight specularity and convexities with mutual illumination, our estimated sub-
spaces (e) match the ground truth (a) reasonably well. The angular differences between
our normals (f) and ground truth normals (b) are most significant in regions having
few non-shadowed measurements (h). For comparison, the normals estimated using
calibrated photometric stereo equipped with perfect shadow detection (c) exhibit similar
deviations from the ground truth (d).

7 Conclusion

We formulate shadow-detection in Lambertian photometric stereo as a subspace
clustering task. This avoids heuristic reasoning about the intensities at individ-
ual pixels, and it allows handling cast and attached shadows in uncalibrated
conditions when only a small number of input images are available. In addition,
we derive a bound on the dimension of the image-span of a Lambertian scene un-
der a discrete set of lights, and this bound has the rare property of incorporating
arbitrary shadowing.

Unlike many previous approaches to shadow detection [8, 16], ours does not
impose a preference for spatial coherence while detecting shadow regions. In-
deed, we find that subspace clustering naturally leads to relatively coherent
regions without this imposition. It is quite likely, however, that incorporating
a spatial coherence constraint during subspace clustering could improve the re-
sults, especially in the presence of non-idealities like mutual illumination, and
this may be a fruitful direction for future research.
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Also, we have restricted ourselves to Lambertian scenes illuminated by di-
rectional lights, and it is worth considering how this analysis can be extended
to handle more general conditions. In particular, one might consider general
environment map lighting [4], where a proper consideration of visibility would
overcome the current (and severe) restriction to convex surfaces.
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(a) Input images (8 of 12)

(b) True subspaces (c) Our subspaces

(d) True normals (e) Our normals

(f) “Best calibrated” normals (g) Reconstruction
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(h) “Best calibrated” angular error (i) Our angular error

Fig. 5. Scholar dataset. The left column shows ground truth (b,d) and normals obtained
by calibrated photometric stereo applied to sparse input images (f). Our results with
the same sparse set of images (a) are shown in the right column (c,e,g). The angular
differences between the true normals (d) and our estimates (e) show that most errors are
small and that large errors are restricted to small regions with strong inter-reflections
(i). For comparison, the calibrated result (f) also exhibits similar deviations (h).


