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Figure 1: In traditional image compositing (a) a user applies geometric transformations to a source image (top) and inserts it into a target
image (bottom). Tools such as the Photoshop Healing Brush use gradient domain compositing to ensure that the composite is seamless (b) but
the inconsistencies between the two images, make the result look unrealistic: the inserted face is much smoother than the rest of the image.
Our method “harmonizes” the images before blending them, producing a composite that is seamless and realistic (c). The close-up images
(d) compare traditional gradient-domain blending (top) to the harmonized result (bottom).

Abstract

Traditional image compositing techniques, such as alpha matting
and gradient domain compositing, are used to create composites
that have plausible boundaries. But when applied to images taken
from different sources or shot under different conditions, these tech-
niques can produce unrealistic results. In this work, we present a
framework that explicitly matches the visual appearance of images
through a process we call image harmonization, before blending
them. At the heart of this framework is a multi-scale technique
that allows us to transfer the appearance of one image to another.
We show that by carefully manipulating the scales of a pyramid
decomposition of an image, we can match contrast, texture, noise,
and blur, while avoiding image artifacts. The output composite can
then be reconstructed from the modified pyramid coefficients while
enforcing both alpha-based and seamless boundary constraints. We
show how the proposed framework can be used to produce realistic
composites with minimal user interaction in a number of different
scenarios.
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1 Introduction

Combining regions of multiple photographs or videos into a seam-
less composite is a fundamental problem in many vision and graph-
ics applications, such as image compositing, mosaicing, scene com-
pletion, and texture synthesis. In order to produce realistic com-
posites, it is important to ensure that the boundaries between the
images being combined appear as seamless and natural as possible.
This can be achieved through alpha matting, where pixel values are
combined using a user-specified alpha matte, or through gradient-
domain compositing techniques, which reconstruct pixel intensities
from merged gradient vector fields.

While necessary, seamless boundaries are not always sufficient for
creating realistic composites. Often the images being combined
come from diverse sources and are shot by different cameras un-
der different conditions. This is illustrated in Fig. 1a, where the
user segments a novel face (top), and inserts it into another image
(bottom). Gradient domain compositing (Fig. 1b) creates seam-
less boundaries in the composite. But because the two images are
from different sources with different appearance, the two regions of
the composite look inconsistent, detracting from the realism of the
composite.



Currently, users fix these inconsistencies manually, and it takes
even professional artists hours of work to produce highly realis-
tic composites. In this paper, we address this problem by building
tools to automatically harmonize images before compositing them
(Fig. 1c). By building methods to automatically correct inconsis-
tencies in images with minimal user interaction, this work takes the
burden of compensating for inconsistencies away from the user and
makes compositing effortless and user-friendly.

The main contribution of this work is a unified framework that har-
monizes aspects of appearance, such as contrast, texture, noise, and
blur. This is guided by the insight that a multi-resolution pyra-
mid representation for images is useful for both transferring dif-
ferent aspects of visual appearance between images and composit-
ing them. We show that we can transfer appearance by manipu-
lating the different levels of the pyramid of the source and target
images so that their histograms match. We also present a novel
method to reconstruct the composite from the modified pyramids
in conjunction with boundary constraints based on matting as well
as gradient-domain compositing. To our knowledge, this is the first
work that explicitly addresses the problem of harmonizing images
during compositing.

This work does not deal with inconsistencies in viewpoint, lighting,
or shadows. We assume that the images have been geometrically
aligned and have compatible viewpoint and vanishing points.

2 Previous Work

Alpha Matting The simplest way to fuse images is to combine
their absolute pixel values. This is often accomplished through al-
pha matting [Porter and Duff 1984], where the colors of the images
are linearly interpolated using weights specified by the alpha matte.
Recent work in this area has focused on making the matte creation
as easy as possible [Wang et al. 2007; Sun et al. 2004], but has not
corrected for appearance differences.

Gradient-Domain Compositing Often two images need to be
merged seamlessly, i.e., the boundary between them should be im-
perceptible. Gradient-domain techniques accomplish this by com-
bining image gradients (instead of absolute pixel values) and solv-
ing for the composite that would best produce the fused gradient
field. These techniques were introduced to the imaging community
by Pérez et al. [2003] and have since become the standard for seam-
less compositing [Agarwala et al. 2004; Levin et al. 2004] and a part
of editing tools such as Photoshop [Georgiev 2004]. Perez et al. also
propose variations of seamless cloning (such as mixing the source
and target gradients) to handle differences in texture, but these so-
lutions work only on very specific images. More recently, Farbman
et al. [2009] showed that the solution to the Poisson linear system
could be approximated using a novel interpolation scheme. This
work did not consider issues related to harmonization of the source
images, but did show that large image regions could be cloned at
interactive rates. In general, our method extends gradient-domain
techniques by reconstructing images from a much larger set of filter
outputs and integrates harmonization into the compositing frame-
work.

Transfer of Visual Appearance Most of the work on transferring
visual appearance focuses on matching color distributions between
images [Reinhard et al. 2001; Pitie et al. 2005; Lalonde and Efros
2007]. Cohen-Or et al. [2006] presented ways to transform images
such that their color palettes are perceptually harmonic. Closely
related to our work, is the work of Bae et al. [2006] on transferring
tonal balance and level of detail from one image to another. They
use a nonlinear bilateral filter to decompose the images into two
scales and match the histograms of these scales to match the style
of the images. We show that we can achieve similar effects with
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Figure 2: An overview of the Multi-scale Image Harmonization
framework. The input source and target images, and a uniform ran-
dom noise image are decomposed into pyramids. Using a smooth
histogram matching technique, the source and noise pyramids are
iteratively shaped so that they match the target pyramid. This pro-
duces a harmonized pyramid from which the final composite is re-
constructed by incorporating seamless and/or matte-based bound-
ary conditions.

linear filters and do this in the context of image compositing. Chen
et al. [2009] present an interactive tool for separating the noise from
an image; this noise can then be transferred to other images. In
contrast, our approach automatically matches noise, contrast and
blur using a single framework.

Multi-scale Methods Our paper is inspired by Burt and Adelson’s
seminal work [1983b] on using multi-scale representations such as
Laplacian pyramids [1983a] to composite images. The statistics of
each level of an image pyramid are known to be correlated with
different aspects of visual appearance and pyramid based represen-
tations have been widely used for many problems in vision and
graphics including texture analysis and synthesis, object recogni-
tion and image retrieval, and transferring visual appearance. In all
these works, images are decomposed into multi-scale pyramids and
the different levels of the pyramids are then analyzed or manipu-
lated to achieve the desired objective. A classic example of this
approach is the work of Heeger and Bergen [1995] who use pyra-
mids for texture synthesis, and show that histogram matching the
subband coefficients of a noise pyramid to those of a given texture
can be used to generate synthetic stochastic textures.

A known problem with pyramids constructed using linear filters, is
that applying nonlinear operations (such as tone-mapping and his-
togram matching) on the subband coefficients of images with struc-
ture often results in artifacts such as haloing along strong edges.
As a result, recent work on multi-scale methods uses nonlinear
edge-preserving filters like the bilateral filter [Tomasi and Man-
duchi 1998] to construct the pyramids [Bae et al. 2006; Fattal et al.
2007; Farbman et al. 2008] and avoid haloing. In contrast to this,
Li et al. [2005] show that linear multi-scale decompositions used in
conjunction with carefully controlled, smooth nonlinear operations
(in their case, compressive transforms for high dynamic range tone
mapping) do not lead to haloing artifacts.

Our work builds on previous uses of linear image pyramids in three
ways. Firstly, we harmonize the appearance of the source and target
images by histogram-matching the pyramid coefficients of the tar-
get to those of the source. Doing this naively could lead to artifacts
but we show how regularizing the histogram transfer can minimize
these artifacts. Secondly, we inject noise into the harmonization
step and show how it can be shaped to handle differences in the
noise and texture patterns between images. Finally, we introduce



(a) Input images (b) Naive histogram (c) Smooth histogram (d) Smooth histogram (e) Pyramid compositing
(Source / Target) matching matching and noise matching with seamless boundaries

Figure 3: In this example compositing scenario, the user clones a flat photograph ((a) top), onto a high-contrast and textured image ((a)
bottom). Using naive histogram matching to modify the target subbands produces a result with blotches and haloing near strong edges (b).
Using smooth histogram matching improves the result but the noise does not match the target image (c). Injecting noise into the harmonization
resolves this (d). Finally, reconstructing the composite from the harmonized pyramid by enforcing seamless boundary conditions produces a
highly realistic result (e). Photo credit: Flickr user Steve Wampler/Steve Wampler ((a) top) and Starstock / Photoshot ((a) bottom).

a novel way of computing the final composite from the histogram-
matched pyramid coefficients by solving a linear system of equa-
tions while satisfying both seamless and matte based boundary con-
ditions.

3 Overview

We assume that the user has a source image Is with an object, or
region, that they would like to insert into a target image It . The
object in the source image may have different visual characteristics
from objects in the target image, and our goal is to harmonize these
characteristics to create a more compelling composite.

At a high level, we begin by building pyramids from the source
and target images. We also synthesize a uniform random noise im-
age and build a pyramid from the noise image. Next, we modify
the source and noise pyramids to match the target pyramid – a pro-
cess that harmonizes the images. Finally, we reconstruct the com-
posite from the harmonized source and noise pyramids taking into
account the appropriate boundary conditions (both alpha and seam-
less boundaries). An overview of this process is shown in Fig. 2. In
this section, we provide an overview of our framework and in the
sections that follow, we discuss each component in detail.

Our compositing framework uses a multi-resolution pyramid rep-
resentation for all images. The pyramid is constructed by filtering
each image with a set of n linear filters, f1 to fn; we use Haar filters.
For a source image Is and target image It , the subbands are:

Bs
i = fi ★ Is

Bt
i = fi ★ It . (1)

A standard separable n-level pyramid has three subbands at every
level in addition to a lowpass residue subband for a total of 3n+1
subbands. Each level of the pyramid representation is created by
filtering an image with three filters of the same scale. The statis-
tics of pyramid subbands are known to be closely related to image
appearance – a property that has been exploited in work on texture
synthesis [Heeger and Bergen 1995; Portilla and Simoncelli 2000].

This makes the pyramid an ideal representation for us, and we har-
monize the images by transforming the source subbands in a way
that matches their statistics to those of the target subbands.

The main tool for modifying the source subbands in order that their
statistics are similar to the target subbands is histogram match-
ing [Heeger and Bergen 1995]. The harmonized subbands coef-
ficients Bh

i can be computed as

Bh
i = histmatch(Bs

i ,B
t
i), (2)

where histmatch() denotes the transfer function that matches the
histogram of Bs

i to that of Bt
i .

While the simple operation in Eqn. 2 is a powerful tool for match-
ing the appearance of images, there are two fundamental problems
with it. First, naive histogram matching is a nonlinear operation that
distorts the shape of the subbands, and images reconstructed from
these modified subbands often suffer from artifacts such as halo-
ing along strong edges and the amplification of noise and block-
ing artifacts. For example, Fig. 3 shows different approaches to
transferring the appearance of an older high-contrast and textured
photograph to a newer flat and smooth photograph. Fig. 3b is the
result of direct histogram matching – the gradients in the original
source image have been over-sharpened and there are haloing arti-
facts near strong edges. Our smooth histogram matching technique
– described in Sec. 4 – minimizes these artifacts by ensuring that
the histogram matching process does not distort the shape of the
subbands substantially (Fig. 3c).

The second problem with a direct application of Eqn. 2 relates to
image noise. Natural images often have noise due to the camera,
such as sensor and ISO noise, or due to compression, such as JPEG
quantization noise. In addition, the target images might have tex-
tures that are missing in the source images. If the noise and texture
patterns in the source and target images differ significantly, his-
togram matching the subbands alone will not harmonize them. To
better model these differences, we introduce a noise term to our
harmonization framework. In other words, we assume that the har-
monized subbands we want to estimate are given by a sum of the



(a) Source image (b) Naive histogram (c) Regularized gain (d) Regularized gain (e) [Bae et al. 2006]
matching and blending

Figure 4: We would like to give the source image, the tulip photograph from Bae et al. (a), the appearance of Ansel Adams’ Clearing Winter
Storm (see Bae et al. [2006] Fig. 2a). Using naive histogram matching produces a result with haloing (b). Regularizing the gain removes
these artifacts (c), but some of strong edges have been over-amplified. Blending in the source at these edges removes these problems producing
a result (d) with the tones from the model image. The technique of Bae et al. [2006] (e) exaggerates these effects for a more stylized result.

structure subbands Bh
i and noise subbands Nh

i , i.e.,

T h
i = Bh

i +Nh
i . (3)

Our intuition is that the structure components Bh
i can be estimated

by shaping the source subbands to match the target subbands, while
the noise components Nh can be estimated by shaping a noise image
to match only the noise in the target subbands. Our harmonization
step – covered in detail in Sec. 5 – does this iteratively to produce
a set of harmonized subband coefficients that exhibit the properties
we desire in the source image, including the appropriate contrast,
texture, noise and blur (Fig. 3d).

The final harmonized image can be reconstructed from the modi-
fied pyramid coefficients T h

i by collapsing the pyramid, i.e., apply-
ing synthesis filters (the inverse of the filters applied in Eqn. 1) and
summing the results. There are fast and efficient algorithms to do
this without explicitly solving the linear system of equations corre-
sponding to Eqn. 1. However, to composite regions of the source
image into the target image, we need to ensure that boundaries are
appropriately handled and simply collapsing the pyramid will not
satisfy the desired boundary constraints. Instead, for image com-
positing, we reconstruct the final composite Ih by solving a linear
system of equations:

FIh = T h− c , (4)

where the matrix F contains the filters used to construct the pyra-
mid, the vector T h contains the harmonized subband coefficients,
and the vector c specifies boundary constraints. In Sec. 6 we discuss
how we set up this linear system and how c can be used to specify
both seamless and alpha matting boundary constraints. While this
linear system can be very large even for small images, we show how
it can solved quickly and accurately using a quadtree subdivision.

4 Smooth Histogram Matching

As shown in Figs. 3 and 4, applying histogram matching naively on
subband coefficients leads to haloing and the amplification of arti-
facts. Instead, we model histogram matching as a gain control that
boosts or reduces subband coefficients depending on their magni-
tudes, and regularize it to avoid artifacts.

We first match the histograms of the source subbands Bs
i to the his-

tograms of the target subbands Bt
i using Eqn. 2. To ensure that we

modify the subband coefficient magnitudes without changing their
sign, we apply the histogram matching on the absolute values of the

coefficients and retain the sign. Matching the histograms produces
the modified subbands Bhist

i .

The effect of the histogram matching can be modeled as a multi-
plicative gain that, in logarithmic units, is given as:

gi(∣Bs
i ∣) = log(∣Bhist

i ∣)− log(∣Bs
i ∣) . (5)

A positive gain indicates an increase in the coefficient magnitude,
i.e., the histogram matching enhanced detail in the source image,
whereas a negative gain represents a decrease in the coefficient
magnitude, i.e., the histogram matching dampened the detail. Up
to this point, multiplying the source subband coefficients Bs

i by the
gain function exp(gi(∣Bs

i ∣)) recovers the histogram matched sub-
bands Bhist

i perfectly.

In practice, three techniques help mitigate visible artifacts intro-
duced by manipulating subband coefficients. The first is to use
undecimated, or oversampled, pyramids; i.e., the subbands of the
pyramid are not downsampled after filtering and are the same size
as the original image [Li et al. 2005]. While pyramids based on any
set of linear filters could be used to construct the pyramids, we use
oversampled Haar pyramids [Gonzalez and Woods 2001] because
of their ease of implementation.

The second method to minimize artifacts is to avoid large values in
the gain function and we do this by controlling the maximum gain
applied:

Ĝi = exp
(

δk

∥gi∥∞

gi

)
. (6)

Here δk indicates the maximum allowed gain for the subbands at
level k and ∥gi∥∞ denotes the maximum value of gi. δk controls the
distortion that will be allowed in the subbands and is set to 1.5.

Finally, the third method to minimize artifacts is to ensure that the
gain is spatially smooth and does not distort the shape of the sub-
bands excessively. As in Li et al. [2005], we do not apply the
computed gain map directly to the subband coefficients. Instead,
at every level of the pyramid k, we compute an activity map that
represents local coefficient magnitude by pooling all the rectified
subbands (i.e., absolute values of the subband coefficients) at that
level and blurring with a Gaussian:

As
k = N(σ)★ ∑

i∈lev(k)
∣Bs

i ∣ , (7)

At
k = N(σ)★ ∑

i∈lev(k)

∣∣Bt
i
∣∣ .



The parameter σ controls the width of the Gaussian N and it in-
creases by a factor of two between levels with the value at the finest
scale set to 4.

Since the activity maps are blurred, they are spatially smooth. Ap-
plying the gain function of Eqn. 6 to the activity maps thus pro-
duces a gain map Ĝ(As

k) that varies smoothly and does not distort
the shape of the subbands excessively. The smooth histogram trans-
fer for subband Bs

i is then given by:

Bh
i = miĜ(As

k)×Bs
i , (8)

where mi is a scaling factor related to the level of the pyramid and
linearly reduces from 1.0 at the finest scale to 0.45 at the coarsest
scale. Eqn. 8 describes the function that drives all the histogram
matching operations we perform on subbands.

Regularizing the gain eliminates most of the artifacts from naive
histogram matching. However, repeatedly manipulating pyramid
coefficients in each iteration, might over-amplify strong edges in
some cases. To avoid this, we compute an aggregate activity map:

As
ag =

m

∑
k=1

As
k, (9)

and convert it into an alpha map that is clamped to 0 at the 85th per-
centile and 1 at the 95th percentile, and varies linearly in between.
We use this alpha map to blend the harmonized pyramid Bh with
the original pyramid Bs. Since the activity maps are highest near
strong edges, the blending removes over-amplified edges from the
harmonized pyramid (Fig. 4d).

5 Structure and Noise Matching

As mentioned in Sec. 3, a composite will fail to look realistic if the
noise pattern of the source image does not match the background in
the target. We also found that histogram matching cannot success-
fully create noise to match a target image if the source image is too
clean. To better match noise in the composited region, we inject
noise into the harmonization process.

Let T s
i represent the sum of the source subband and the correspond-

ing noise subband, T s
i = Bs

i +Ns
i . Similarly the harmonized sub-

bands we wish to estimate T h
i are also a sum of structure compo-

nents and noise components. Following Eqn. 8, we construct a gain
map Ĝb by matching the histogram of the summed source subbands
to the target image.

For the noise subband, we construct a gain map, Ĝn, designed
specifically to shape the noise. We high-pass filter the target image
to isolate the noise image In and construct a target noise pyramid
Nt . This noise will also contain components of the image structure
and cannot be used directly. Instead we assume that the noise com-
ponents are more prominent in low-activity regions of the target
image and we identify these by thresholding the target aggregate
activity map as:

Ω = At
ag < percentile(At

ag,β ). (10)

At
ag is computed by applying Eqn. 9 to the target image, and β is

a user-specified parameter that enables us to differentiate between
structure and the noise in the target image. We construct the gain
map Ĝn using the process described in Sec. 4 by histogram match-
ing the subbands Ns

i to the target noise pyramid subbands Nt
i , but

restricted to the low-activity regions.

To summarize, the subband gain map Ĝb is computed by histogram
matching the summed subband T s

i to the target subband Bt
i using

the entire compositing region. The noise gain map Ĝn is computed
by histogram-matching the subbands Ns

i to the target noise pyramid
subbands Nt

i while restricting the pixels to the low-activity region
Ω. The structure and noise subbands are then updated as in Eqn. 8:

Bh
i = Ĝb(A

s
i )Bs

i (11)

Nh
i = Ĝn(∣Ns

i ∣)Ns
i . (12)

After applying the gains, we collapse the source and noise pyramids
to produce the corresponding images and repeat the entire harmo-
nization loop for a fixed number of iterations (set to 5). We refer to
this combination of smooth histogram and noise matching as har-
monization.

After the final iteration, the harmonized pyramid T h is given by:

T h
i = Bh

i +Nh
i . (13)

By collapsing this pyramid, we can reconstruct the final output im-
age. If the goal is to composite the harmonized source and target
images, we also need to impose the appropriate boundary condi-
tions on the reconstruction. In the next section we describe how we
achieve this.

6 Pyramid compositing

In the absence of any boundary conditions, the image correspond-
ing to the harmonized subbands T h is the solution to a linear system
that comprises n separate linear systems, each corresponding to one
subband in the harmonized pyramid:⎡⎢⎢⎣

f1
f2
...
fn

⎤⎥⎥⎦ Ih =

⎡⎢⎢⎢⎣
T h

1
T h

2
...

T h
n

⎤⎥⎥⎥⎦ , (14)

where fi are the filters used to construct the pyramid, T h
i are the

harmonized subbands, and the vector Ih is the final composite.

Alpha matting and gradient-based compositing (also known as
seamless cloning) are the two common ways of producing plau-
sible boundaries in composites. While most compositing methods
can handle one or the other – Drag and Drop Pasting [Jia et al. 2006]
is a notable exception – in many cases, we would like to have both
kinds of boundaries (see Fig. 8).

In alpha matting the composite is created by blending the fore-
ground image with the background image (in our case the target
image It ) using the alpha matte αm:

Ih = αmI f +(1−αm)It . (15)

Combining the matting equation with Eqn. 14 gives us the relation:⎡⎢⎢⎣
αm f1
αm f2

...
αm fn

⎤⎥⎥⎦ I f =

⎡⎢⎢⎢⎣
T h

1 − (1−αm) f1 ★ It

T h
2 − (1−αm) f2 ★ It

...
T h

n − (1−αm) fn ★ It

⎤⎥⎥⎥⎦ . (16)

Since both the matte values and the target image are known, we can
solve for I f and compute the final composite Ih by substituting I f

in Eqn. 15.

We can incorporate seamless boundaries in Eqn. 16 by using the
binary compositing mask as the alpha matte. Also, while imposing



(a) Source Image (b) Our result (c) [Bae et al. 2006]

Figure 5: Using our harmonization framework to transfer the photographic look of Ansel Adams’ Clearing Winter Storm to the source image
(a) produces results (b) with similar effects to the system described by Bae et al. [2006] (c).

seamless boundary conditions, we drop the equations correspond-
ing to the coarsest lowpass subband, from Eqn. 16. This is similar to
gradient domain techniques, where the composite is reconstructed
solely from the (highpass) gradients.

To solve Eqn. 16 accurately, the subband coefficients T h need to be
consistent with the boundary conditions that we wish to impose. To
ensure this, we combine the given alpha matte and seamless region
into a single mask that is used to matte the source and target images
to create a new image that is now used as the source image. The
source subband coefficients T s

i are computed by decomposing this
image, and the harmonization as described in Sec. 5 is applied on
them. Since the source pyramid is constructed on an image with the
correct boundary conditions, the harmonized subband coefficients
at the edges will encode these boundary conditions.

Quadtree Solver The size of the linear system we wish to solve
in Eqn. 16 is quadratic in the number of pixels in the composited
region, and as the size of the region increases, solving Eqn. 16 di-
rectly becomes prohibitively expensive. While this is true of most
gradient-based techniques, this effect is amplified in our case be-
cause of the larger number of filters we employ.

Since we have chosen pyramid filters, we can reconstruct an im-
age from the subband coefficients by collapsing the pyramid. This
pyramid solution Ih

pyr, while fast to compute, does not satisfy the
boundary constraints. On the other hand, the least-squares solu-
tion to Eqn. 16 Ih

lsq, satisfies the boundary constraints, but is slow
to compute. The difference between these images is smoother than
both Ih

pyr and Ih
lsq and can therefore be well approximated by an

upsampled lower resolution image.

Agarwala [2007] made a similar observation in the context of
panorama stitching, and proposed an algorithm that spatially subdi-
vides the problem domain to create a reduced linear system. In our
case, Ih

d still has some of the structure of the original image and we
modify the Agarwala algorithm to allocate pixels to regions of high
subband coefficient activity as described by the aggregate source
activity map As

ag. Starting with the entire compositing region, we
recursively subdivide every block of pixels into four quadrants as
long as the aggregate activity in that block is greater than a thresh-
old (set to 4). By basing the quadtree decomposition on the activity
map, we are able to sample the difference image well. We solve
for the difference image at the pixels at the corners of the quadtree
decomposition and the pixels along seam boundaries. At all other
pixels, we bilinearly interpolate these values and add it to the pyra-
mid solution to produce an approximation that is visually identical
but much faster to compute.

7 Results and Discussion

In this section, we describe how our framework can be used to eas-
ily create compelling composites in several common scenarios. The
results in this paper have been scaled down and we request that the
reader zoom into the images in the electronic version of the paper.
All the results are also presented in the accompanying supplemen-
tary material where they can be viewed in higher resolution.

Except for Fig. 7, all the results shown in this paper were created
using a 3-level pyramid. The one parameter in our system that is
useful to control the final composite is the noise percentile β in
Eqn. 10. The noise percentile enables us to distinguish between
structure and noise and needs to be set according to how noisy the
target image is. We used a value of 25% for all the results except
for Figs. 6 and 9 where we used 50%.

The run-times for our unoptimized Matlab implementation depend
on the size of regions being composited and varied from 15 sec-
onds for the result in Fig. 11a (≈ 5500 pixels in the composited
region) to 12 minutes for the example in Fig. 8 (≈ 185500 pixels in
the composited region). In most cases, almost 85% of the time is
spent on solving the reduced version of the linear system in Eqn. 16.
We used the CSparse library [Davis 2006] to solve the linear sys-
tem. Recent work on fast sparse solvers [Szeliski 2006; McCann
and Pollard 2008] and approximate solutions [Farbman et al. 2009]
leads us to believe that an optimized implementation of our system
can drastically reduce computation times.

Style transfer With smooth histogram matching on subbands, our
harmonization framework is able to achieve effects similar to the
style transfer technique described by Bae et al. [2006]. Their ap-
proach uses a two-level decomposition with nonlinear filters and
has separate routines that allow it to exaggerate details. While our
goal for harmonization is to improve realism rather than create a
stylized result, our results in Figs. 4 and 5 suggest that some of
these effects are possible within a linear pyramid framework.

Contrast Matching The source image in Fig. 11 has very different
contrast from the target faces it has been composited into and the
seamlessly cloned composite look unrealistic. By harmonizing the
images, our method creates more natural composites.

Noise Matching In many cases, the noise characteristics of the
source and target images are different. Injecting noise into our
framework allows us to reproduce the noise characteristics of the
target image and produces a more compelling result. This is illus-
trated in the examples in Figs. 8, 10, and 11.

While the harmonization framework can add noise to a image to
match appearance, an interesting case is the problem of inserting a



(a) Source (b) Target

(c) Seamless cloning (d) Harmonized result

Figure 6: The sand in the source image (a) has a different tex-
ture from that in the target image (b) leading to easily perceiv-
able seams in the seamless cloning result (c). Harmonizing the
two image matches the two textures so that the resulting composite
(d) is more consistent. Photo credits: Flickr users Ivar Husevåg
Døskeland/Scarto (a), and Christian Guthier/net_efekt (b).

noisy source image into a smooth target region. This is similar to
denoising, which is a long-standing problem in image processing.
As seen in Fig. 10, matching the pyramid subbands decreases the
noise and produces a better composite. Intuitively, harmonization
suppresses the high frequencies of the noisy source image and au-
tomatically selects the bands to remove frequencies from based on
the frequencies in the target image. However, harmonization will
not be able to remove all the noise, and often, the final result will
be slightly blurred compared to the original.

Texture matching In both Figs. 1 and 6, the target image has a tex-
tured appearance that the source does not have. This is especially
pronounced in Fig. 6, where the images are of completely different
kinds of sand. While gradient domain compositing produces seam-
less boundaries, the seam is still easily perceived. By shaping the
noise we inject into our system to match the textures on the images,
we are able to produce more compatible results.

Color While our framework was described for grayscale images,
it can be easily extended to color. It is important to manipulate
color channels in a decorrelated color space so as not to create color
shifts and we have found that CIELAB works well. We convert the
images to CIELAB space and then harmonize and composite each
channel separately. In some cases, the user might like to match
the color palette of the source and target images and we use the N-
dimensional PDF transfer method of Pitié et al. [2005] to match the
a and b channels of the source image to those of the target before
harmonizing them (Figs. 1, 8, and 10).

Blur Another scenario in compositing is when the user combines
two regions with different blur. This is illustrated in Fig. 7 where
the user segments a sharp object and clones it onto a blurred region
expecting the inserted object to have the same defocus properties as
the source. By harmonizing the inserted object with the defocused
objects it is replacing, we are able to produce an image with realistic
blur. We used a 4-level pyramid to generate this example because
of the large amount of blur.

Mixed boundary constraints One of the advantages of pyramid
compositing is the ability to incorporate boundary conditions for

(a) Source / Target (b) Harmonized result

Figure 7: The region marked in red in the original image (a) is
copied and pasted onto the regions marked in green. Cloning the
pasted region seamlessly will not match the blur of the original im-
age. Matching the blur produces a result (b) that preserves the shal-
low depth of field of the original photograph. Photo credit: Flickr
user Brad T. Patterson/patterbt.

(a) Source (b) Target

(c) Harmonized result

Figure 8: In this example, the user clones a Porsche (a) into an
old photograph of a Ferrari (b). Our result (c) matches the noise
on the images, and alpha mattes the car while enforcing seamless
boundaries on the road at the bottom. Photo credits: Flickr users
Thomas Helbig/teliko82 (a), and Jim Culp/prorallypix (b).

both alpha matting and seamless cloning. This is illustrated by
Figs. 8 and 9, where the final composite has seamless boundaries
in some parts (the road and the sand) and alpha matte based bound-
aries elsewhere (the car and the hydrant).

Limitations Like Heeger-Bergen texture synthesis, our noise and
texture matching technique makes the assumption that the target
noise and texture can be matched by shaping the subbands of the
noise image. Such techniques are known to work well on stochas-
tic textures but do not reproduce every texture pattern accurately.
In particular, it is known that histogram matching of pyramid sub-
bands cannot be used to create textures that are correlated across



(a) Source / Target (b) Harmonized result

Figure 9: Limitations. A hydrant in snow ((a) top) has been com-
posited into sand ((a) bottom). Harmonization matches the snow
to the sand, and compositing with mixed boundary conditions pro-
duces seamless boundaries along the sand and matting along the
hydrant. However, the texture generated is not able to match the
structure of the original sand. Also, because the target image does
not have shadows or a hydrant, harmonization is not able to pro-
duce realistic shadows and has added excessive noise on the hy-
drant. Photo credits: Flickr users Robert Fornal/Bob.Fornal ((a)
top) and Luis Argerich/lrargerich ((a) bottom).

scales [Portilla and Simoncelli 2000]. Therefore, in some cases
there might be differences in the noise between the target and har-
monized images. For example, the harmonized image in Fig. 1 does
not capture the small cracks in the painting and the result in Fig. 9
does not replicate the structure of the sand. In spite of this, har-
monization leads to a substantial improvement in the realism of the
composite, and in most cases, it is difficult to see the differences
without looking at the original target image.

Also, a fundamental assumption of our approach is that matching
the statistics of the source and target images will harmonize them.
This may not always be the case, especially in situations where the
objects being matched are completely different. This is illustrated
in Fig. 9, where matching the images does not produce the right
colors and leads to excessive noise on the foreground object.

8 Conclusions and Future Work

We have presented a framework that harmonizes the appearance of
images before compositing them. By automatically matching dif-
ferent aspects of visual appearance, such as contrast, texture, noise,
and blur, our technique takes the burden of correcting for them away
from the user. We have also presented a novel compositing scheme
that allows us to enforce both matte-based and seamless boundaries
in the same framework.

There are other aspects of visual appearance that are important to
the realism of a composite that our work does not address. The
most important of these are shadows and shading. Automatically
estimating and correcting the lighting in single images is a difficult
vision problem and is an interesting avenue for future work.

The ability to realistically combine multiple images is important
in many vision and graphics applications such as image mosaicing
and digital photomontage, and we would like to apply our methods
in their context too. In addition, we are interested in extending our
work to the problem of video object insertion. Videos often have
high levels of noise and compression and we believe our methods
will be useful in creating realistic video composites.
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matching matching and noise matching

Figure 11: This figure illustrates how our method adapts the same source image to match different target images with markedly different
contrast, noise, and texture. Gradient domain compositing (b) produces unrealistic results because of the discrepancies between the images
being combined. Naive histogram matching (c) oversharpens the source image and creates ringing around strong gradients. Our smooth
histogram matching method (d) automatically adapts the source image to each of the targets without these artifacts, but the noise is still
inconsistent. Matching both the structure and the noise removes these inconsistencies and produces realistic results (e). Photo credits: Flickr
users The Rob Oechsle Collection/Okinawa Soba (second row), Zsolt Botykai/zsoltika (third row), and David Flam/freeparking (fourth
and fifth rows).


